Logarithmic Sobolev inequalities in discrete product spaces

K. Marton
{"title":"Logarithmic Sobolev inequalities in discrete product spaces","authors":"K. Marton","doi":"10.1017/S0963548319000099","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional relative entropies of the following form: for a fixed probability measure q on , ( is a finite set), and any probability measure on , (*) $$D(p||q){\\rm{\\le}}C \\cdot \\sum\\limits_{i = 1}^n {{\\rm{\\mathbb{E}}}_p D(p_i ( \\cdot |Y_1 ,{\\rm{ }}...,{\\rm{ }}Y_{i - 1} ,{\\rm{ }}Y_{i + 1} ,...,{\\rm{ }}Y_n )||q_i ( \\cdot |Y_1 ,{\\rm{ }}...,{\\rm{ }}Y_{i - 1} ,{\\rm{ }}Y_{i + 1} ,{\\rm{ }}...,{\\rm{ }}Y_n )),} $$ where pi(· |y1, …, yi−1, yi+1, …, yn) and qi(· |x1, …, xi−1, xi+1, …, xn) denote the local specifications for p resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant C depends on (the local specifications of) q. The inequality (*) ismeaningful in product spaces, in both the discrete and the continuous case, and can be used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are available for qi(· |x1, …, xi−1, xi+1, …, xn), for all fixed i and fixed (x1, …, xi−1, xi+1, …, xn). Inequality (*) directly implies that the Gibbs sampler associated with q is a contraction for relative entropy. In this paper we derive inequality (*), and thereby a logarithmic Sobolev inequality, in discrete product spaces, by proving inequalities for an appropriate Wasserstein-like distance.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548319000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Abstract The aim of this paper is to prove an inequality between relative entropy and the sum of average conditional relative entropies of the following form: for a fixed probability measure q on , ( is a finite set), and any probability measure on , (*) $$D(p||q){\rm{\le}}C \cdot \sum\limits_{i = 1}^n {{\rm{\mathbb{E}}}_p D(p_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,...,{\rm{ }}Y_n )||q_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,{\rm{ }}...,{\rm{ }}Y_n )),} $$ where pi(· |y1, …, yi−1, yi+1, …, yn) and qi(· |x1, …, xi−1, xi+1, …, xn) denote the local specifications for p resp. q, that is, the conditional distributions of the ith coordinate, given the other coordinates. The constant C depends on (the local specifications of) q. The inequality (*) ismeaningful in product spaces, in both the discrete and the continuous case, and can be used to prove a logarithmic Sobolev inequality for q, provided uniform logarithmic Sobolev inequalities are available for qi(· |x1, …, xi−1, xi+1, …, xn), for all fixed i and fixed (x1, …, xi−1, xi+1, …, xn). Inequality (*) directly implies that the Gibbs sampler associated with q is a contraction for relative entropy. In this paper we derive inequality (*), and thereby a logarithmic Sobolev inequality, in discrete product spaces, by proving inequalities for an appropriate Wasserstein-like distance.
离散积空间中的对数Sobolev不等式
摘要本文的目的是证明相对熵与平均条件相对熵之和之间的不等式,其形式如下:对于一个固定的概率测度q,(是一个有限集合),和任意一个概率测度(*)$$D(p||q){\rm{\le}}C \cdot \sum\limits_{i = 1}^n {{\rm{\mathbb{E}}}_p D(p_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,...,{\rm{ }}Y_n )||q_i ( \cdot |Y_1 ,{\rm{ }}...,{\rm{ }}Y_{i - 1} ,{\rm{ }}Y_{i + 1} ,{\rm{ }}...,{\rm{ }}Y_n )),} $$,其中pi(·|y1,…,yi−1,yi+1,…,yn)和qi(·|x1,…,xi−1,xi+1,…,xn)表示p的局部规范。Q,也就是第i个坐标的条件分布,给定其他坐标。常数C依赖于q的(局部规范)。不等式(*)在离散和连续情况下的积空间中都是有意义的,并且可以用来证明q的一个对数Sobolev不等式,前提是qi(·|x1,…,xi−1,xi+1,…,xn)对于所有固定i和固定(x1,…,xi−1,xi+1,…,xn)具有一致的对数Sobolev不等式。不等式(*)直接表示与q相关的吉布斯采样器是相对熵的收缩。本文通过证明一个适当的类wasserstein距离的不等式,推导出离散积空间中的不等式(*),从而得到一个对数Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信