Systematic bias of selected estimates applied in vertical displacement analysis

IF 0.9 Q4 REMOTE SENSING
P. Wyszkowska, R. Duchnowski
{"title":"Systematic bias of selected estimates applied in vertical displacement analysis","authors":"P. Wyszkowska, R. Duchnowski","doi":"10.1515/jogs-2020-0103","DOIUrl":null,"url":null,"abstract":"Abstract In surveying problems we almost always use unbiased estimators; however, even unbiased estimator might yield biased assessments, which is due to data. In statistics one distinguishes several types of such biases, for example, sampling, systemic or response biases. Considering surveying observation sets, bias from data might result from systematic or gross errors of measurements. If nonrandom errors in an observation set are known, then bias can easily be determined for linear estimates (e.g., least squares estimates). In the case of non-linear estimators, it is not so simple. In this paper we are focused on a vertical displacement analysis and we consider traditional least squares estimate, two Msplitestimates and two basic robust estimates, namely M-estimate, R-estimate. The main aim of the paper is to assess estimate biases empirically by applying Monte Carlo method. The smallest biases are obtained for M- and R-estimates, especially for a high magnitude of a gross error. On the other hand, there are several cases when Msplitestimates are the best. Such results are acquired when the magnitude of a gross error is moderate or small. The outcomes confirm that bias of Msplitestimates might vary for different point displacements.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In surveying problems we almost always use unbiased estimators; however, even unbiased estimator might yield biased assessments, which is due to data. In statistics one distinguishes several types of such biases, for example, sampling, systemic or response biases. Considering surveying observation sets, bias from data might result from systematic or gross errors of measurements. If nonrandom errors in an observation set are known, then bias can easily be determined for linear estimates (e.g., least squares estimates). In the case of non-linear estimators, it is not so simple. In this paper we are focused on a vertical displacement analysis and we consider traditional least squares estimate, two Msplitestimates and two basic robust estimates, namely M-estimate, R-estimate. The main aim of the paper is to assess estimate biases empirically by applying Monte Carlo method. The smallest biases are obtained for M- and R-estimates, especially for a high magnitude of a gross error. On the other hand, there are several cases when Msplitestimates are the best. Such results are acquired when the magnitude of a gross error is moderate or small. The outcomes confirm that bias of Msplitestimates might vary for different point displacements.
垂直位移分析中所选估计的系统偏差
在测量问题中,我们几乎总是使用无偏估计量;然而,即使是无偏估计也可能产生有偏的评估,这是由于数据的原因。在统计学中,人们可以区分几种类型的偏差,例如,抽样、系统或反应偏差。考虑到调查观测集,数据偏差可能是由测量的系统误差或严重误差引起的。如果观测集中的非随机误差是已知的,那么对于线性估计(例如,最小二乘估计),可以很容易地确定偏差。在非线性估计器的情况下,它不是那么简单。在本文中,我们着重于垂直位移分析,我们考虑了传统的最小二乘估计,两个msplit估计和两个基本稳健估计,即m估计,r估计。本文的主要目的是利用蒙特卡罗方法对估计偏差进行实证评估。对于M和r估计,偏差最小,特别是对于较大的总误差。另一方面,在某些情况下,msplitestimate是最好的。当总误差的大小适中或较小时,就会得到这样的结果。结果证实,msplit估计的偏差可能因不同的点位移而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信