Finaz Khan, S. Prusty, Pritha Saha, D. Bera, B. Datta, R. S. Saraffin, Arijit Kapuria, K. Dutta, Susmita Das
{"title":"Bimodal surface modification strategies towards improving the antibacterial activity of graphene oxide","authors":"Finaz Khan, S. Prusty, Pritha Saha, D. Bera, B. Datta, R. S. Saraffin, Arijit Kapuria, K. Dutta, Susmita Das","doi":"10.1557/s43578-023-01138-y","DOIUrl":null,"url":null,"abstract":"Herein, we have demonstrated and compared bimodal strategies towards augmenting the antimicrobial activity of graphene oxide (GO). Among the two modifications viz. through alteration of GO surface functionalities and secondly through surface modification of GO with an ampicillin-based antibacterial ionic liquid (IL), the IL modification was most effective in enhancing the bactericidal effect. pH and the zeta potential values of the nanodispersions support the alteration of surface functionalities of GO by variation in reaction conditions and SEM, XRD, Raman spectra establish the resulting sheet thickness, morphology, stacking and planarity. The surface modification of GO with trihexyltetradecyl phosphonium ampicillin ([TTP][Amp]) IL as indicated by FTIR, SEM, pH and zeta potential measurements imply in nearly five times lower MBC value compared to average MBC value of the four GO variants. Hence, judicious IL modification can be an effective approach towards augmenting antibacterial property of GO for enduring antifouling coatings and membranes.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"143 1","pages":"4247 - 4260"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01138-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we have demonstrated and compared bimodal strategies towards augmenting the antimicrobial activity of graphene oxide (GO). Among the two modifications viz. through alteration of GO surface functionalities and secondly through surface modification of GO with an ampicillin-based antibacterial ionic liquid (IL), the IL modification was most effective in enhancing the bactericidal effect. pH and the zeta potential values of the nanodispersions support the alteration of surface functionalities of GO by variation in reaction conditions and SEM, XRD, Raman spectra establish the resulting sheet thickness, morphology, stacking and planarity. The surface modification of GO with trihexyltetradecyl phosphonium ampicillin ([TTP][Amp]) IL as indicated by FTIR, SEM, pH and zeta potential measurements imply in nearly five times lower MBC value compared to average MBC value of the four GO variants. Hence, judicious IL modification can be an effective approach towards augmenting antibacterial property of GO for enduring antifouling coatings and membranes.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.