{"title":"Efficient production of lysine from genetically modified Corynebacterium glutamicum by feedback inhibition resistant strain","authors":"","doi":"10.47262/bl/8.1.20220105","DOIUrl":null,"url":null,"abstract":"Lysine is an essential amino acid required for the synthesis of proteins. Lysine deficiency leads to numerous irreversible damages to the brain and other body organs. It plays a vital role in the treatment of osteoporosis and Herpes Simplex Virus (HSV). Lysine is commonly produced through fermentation. However, its efficient production is still a bottle neck. The wild strains of microorganisms are unable to produce sufficient amino acid. The current study was designed to enhance the lysine production through feedback inhibition resistant strains. N-methyl-N-nitro-N-nitrosoguanidine (NTG) was utilized to mutate the Corynebacterium glutamicum strain B391 to increase the production of Lysine. C. glutamicum was used as fermenting agent and cultivated in molasses-based media. S-β-aminoethyl-L-cysteine (AEC) lysine analogue resistant mutants were selected. It was observed that 30 g/L and 55 g/L of lysine were produced by the parent and mutant strains, respectively. The increase in lysine production was observed with 10% of sugar concentration in 100 mL of molasses media (6.5 pH, and temperature 30°C) with inoculum size of 8%. Furthermore, two different molasses media with different ingredients (termed M1 and M2) were used for the lysine production. The lysine production M-2 was observed more prominent.","PeriodicalId":9154,"journal":{"name":"Biomedical Letters","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47262/bl/8.1.20220105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lysine is an essential amino acid required for the synthesis of proteins. Lysine deficiency leads to numerous irreversible damages to the brain and other body organs. It plays a vital role in the treatment of osteoporosis and Herpes Simplex Virus (HSV). Lysine is commonly produced through fermentation. However, its efficient production is still a bottle neck. The wild strains of microorganisms are unable to produce sufficient amino acid. The current study was designed to enhance the lysine production through feedback inhibition resistant strains. N-methyl-N-nitro-N-nitrosoguanidine (NTG) was utilized to mutate the Corynebacterium glutamicum strain B391 to increase the production of Lysine. C. glutamicum was used as fermenting agent and cultivated in molasses-based media. S-β-aminoethyl-L-cysteine (AEC) lysine analogue resistant mutants were selected. It was observed that 30 g/L and 55 g/L of lysine were produced by the parent and mutant strains, respectively. The increase in lysine production was observed with 10% of sugar concentration in 100 mL of molasses media (6.5 pH, and temperature 30°C) with inoculum size of 8%. Furthermore, two different molasses media with different ingredients (termed M1 and M2) were used for the lysine production. The lysine production M-2 was observed more prominent.