An Efficient Implementation for Spatial-Temporal Gaussian Process Regression and Its Applications

Junpeng Zhang, Yue Ju, Biqiang Mu, Renxin Zhong, Tianshi Chen
{"title":"An Efficient Implementation for Spatial-Temporal Gaussian Process Regression and Its Applications","authors":"Junpeng Zhang, Yue Ju, Biqiang Mu, Renxin Zhong, Tianshi Chen","doi":"10.48550/arXiv.2209.12565","DOIUrl":null,"url":null,"abstract":"Spatial-temporal Gaussian process regression is a popular method for spatial-temporal data modeling. Its state-of-art implementation is based on the state-space model realization of the spatial-temporal Gaussian process and its corresponding Kalman filter and smoother, and has computational complexity $\\mathcal{O}(NM^3)$, where $N$ and $M$ are the number of time instants and spatial input locations, respectively, and thus can only be applied to data with large $N$ but relatively small $M$. In this paper, our primary goal is to show that by exploring the Kronecker structure of the state-space model realization of the spatial-temporal Gaussian process, it is possible to further reduce the computational complexity to $\\mathcal{O}(M^3+NM^2)$ and thus the proposed implementation can be applied to data with large $N$ and moderately large $M$. The proposed implementation is illustrated over applications in weather data prediction and spatially-distributed system identification. Our secondary goal is to design a kernel for both the Colorado precipitation data and the GHCN temperature data, such that while having more efficient implementation, better prediction performance can also be achieved than the state-of-art result.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spatial-temporal Gaussian process regression is a popular method for spatial-temporal data modeling. Its state-of-art implementation is based on the state-space model realization of the spatial-temporal Gaussian process and its corresponding Kalman filter and smoother, and has computational complexity $\mathcal{O}(NM^3)$, where $N$ and $M$ are the number of time instants and spatial input locations, respectively, and thus can only be applied to data with large $N$ but relatively small $M$. In this paper, our primary goal is to show that by exploring the Kronecker structure of the state-space model realization of the spatial-temporal Gaussian process, it is possible to further reduce the computational complexity to $\mathcal{O}(M^3+NM^2)$ and thus the proposed implementation can be applied to data with large $N$ and moderately large $M$. The proposed implementation is illustrated over applications in weather data prediction and spatially-distributed system identification. Our secondary goal is to design a kernel for both the Colorado precipitation data and the GHCN temperature data, such that while having more efficient implementation, better prediction performance can also be achieved than the state-of-art result.
时空高斯过程回归的有效实现及其应用
时空高斯过程回归是一种流行的时空数据建模方法。其最先进的实现是基于时空高斯过程及其相应的卡尔曼滤波和平滑的状态-空间模型实现,其计算复杂度为$\mathcal{O}(NM^3)$,其中$N$和$M$分别为时间瞬间数和空间输入位置数,因此只能应用于$N$大而$M$相对较小的数据。在本文中,我们的主要目标是表明,通过探索时空高斯过程的状态空间模型实现的Kronecker结构,有可能进一步将计算复杂度降低到$\mathcal{O}(M^3+NM^2)$,从而提出的实现可以应用于具有大$N$和中等大$M$的数据。最后以天气数据预测和空间分布式系统识别为例说明了该方法的实现。我们的第二个目标是为科罗拉多降水数据和GHCN温度数据设计一个内核,这样在实现更有效的同时,也可以实现比最先进的结果更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信