The MVDR beamformer for circular arrays

B. Friedlander
{"title":"The MVDR beamformer for circular arrays","authors":"B. Friedlander","doi":"10.1109/ACSSC.2000.910912","DOIUrl":null,"url":null,"abstract":"The problem of space-time adaptive processing (STAP) using a circular array is considered. A key part of STAP is the estimation of the space-time covariance matrix of the received data. The conventional method of doing this can be shown to cause performance degradation at short ranges. We present a method based on steering vector interpolation to remedy this problem. The method applied linear transformations to the data from adjacent range cells. the transformed data are then used to form the sample covariance matrix. Numerical examples illustrate significant performance improvement when using the transformed rather than the original data.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"110 1","pages":"25-29 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The problem of space-time adaptive processing (STAP) using a circular array is considered. A key part of STAP is the estimation of the space-time covariance matrix of the received data. The conventional method of doing this can be shown to cause performance degradation at short ranges. We present a method based on steering vector interpolation to remedy this problem. The method applied linear transformations to the data from adjacent range cells. the transformed data are then used to form the sample covariance matrix. Numerical examples illustrate significant performance improvement when using the transformed rather than the original data.
圆形阵列的MVDR波束形成器
研究了利用圆形阵列进行时空自适应处理的问题。STAP的一个关键部分是接收数据的空时协方差矩阵的估计。这样做的传统方法可以在短距离内导致性能下降。我们提出了一种基于转向矢量插值的方法来解决这个问题。该方法对相邻距离单元的数据进行线性变换。然后用变换后的数据形成样本协方差矩阵。数值示例表明,使用转换后的数据而不是原始数据可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信