{"title":"Microstructure Evolution at High Temperatures for Co-MOF-74 as High-Efficiency Electromagnetic Absorbers","authors":"Yue Zhang, Tao Li, Shiman Tang, Xinchun Xie, Ru Zeng Liang, X. Chu","doi":"10.4028/p-1x0wn2","DOIUrl":null,"url":null,"abstract":"Increasing demands of microwave absorbents require new approaches to enhance the absorbing performance. Metal−organic frameworks (MOFs) could be developed as effective absorbers owing to their outstanding features including intrinsic porosity and high specific area. Herein, novel nanostructured Co-MOF-74 composites have been successfully fabricated via a simple solvothermal method. Excellent absorption performance was achieved for the composite with a minimum reflection loss (RL) of −25.5 dB at 2.5 mm and a broad absorption bandwidth (RL < −10 dB) of 6.7 GHz. Such absorber could be developed as lightweight and high-efficiency absorbing materials, and this work provides inspiration for the design of advanced absorbers with strong dissipation capacity and broad effective bandwidth.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"405 1","pages":"29 - 35"},"PeriodicalIF":0.4000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-1x0wn2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing demands of microwave absorbents require new approaches to enhance the absorbing performance. Metal−organic frameworks (MOFs) could be developed as effective absorbers owing to their outstanding features including intrinsic porosity and high specific area. Herein, novel nanostructured Co-MOF-74 composites have been successfully fabricated via a simple solvothermal method. Excellent absorption performance was achieved for the composite with a minimum reflection loss (RL) of −25.5 dB at 2.5 mm and a broad absorption bandwidth (RL < −10 dB) of 6.7 GHz. Such absorber could be developed as lightweight and high-efficiency absorbing materials, and this work provides inspiration for the design of advanced absorbers with strong dissipation capacity and broad effective bandwidth.