Monocular Depth Matching With Hybrid Sampling and Depth Label Propagation

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ye Hua, Qu Xi Long, Lihua Jin
{"title":"Monocular Depth Matching With Hybrid Sampling and Depth Label Propagation","authors":"Ye Hua, Qu Xi Long, Lihua Jin","doi":"10.4018/ijdcf.302879","DOIUrl":null,"url":null,"abstract":"This paper proposes a monocular depth label propagation model, which describes monocular images into depth label distribution for the target classification matching. 1) Depth label propagation by hybrid sampling and salient region sifting, improve the discrimination of detection feature categories. 2) Depth label mapping and spectrum clustering to classify target, define the depth of the sorting rules. The experimental results of motion recognition and 3D point cloud processing, show that this method can approximately reach the performance of all previous monocular depth estimation methods. The neural network model black box training learning module is not used, which improves the interpretability of the proposed model.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.302879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a monocular depth label propagation model, which describes monocular images into depth label distribution for the target classification matching. 1) Depth label propagation by hybrid sampling and salient region sifting, improve the discrimination of detection feature categories. 2) Depth label mapping and spectrum clustering to classify target, define the depth of the sorting rules. The experimental results of motion recognition and 3D point cloud processing, show that this method can approximately reach the performance of all previous monocular depth estimation methods. The neural network model black box training learning module is not used, which improves the interpretability of the proposed model.
基于混合采样和深度标签传播的单目深度匹配
本文提出了一种单眼深度标签传播模型,该模型将单眼图像描述为深度标签分布,用于目标分类匹配。1)采用混合采样和显著区筛选的深度标签传播方法,提高检测特征类别的判别能力。2)深度标签映射和谱聚类对目标进行分类,定义深度排序规则。运动识别和三维点云处理的实验结果表明,该方法可以近似达到以往所有单目深度估计方法的性能。不使用神经网络模型黑匣子训练学习模块,提高了模型的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信