Discussion on: "H∞ Control of Distributed and Discrete Delay Systems via Discretized Lyapunov Functional"

K. Gu
{"title":"Discussion on: \"H∞ Control of Distributed and Discrete Delay Systems via Discretized Lyapunov Functional\"","authors":"K. Gu","doi":"10.3166/ejc.15.95-96","DOIUrl":null,"url":null,"abstract":"performance requirement, and design of state feed-backcontrol.Asisnowwellknown,inordertoobtainstability conditions using Lyapunov-Krasovskiifunctional (LKF) approach, it is necessary to use acomplete quadratic LKF, as is done in this article. Asa general quadratic functional involve infinite numberof parameters, some discretization process is neces-sary in order to render conditions in a computableform. A piece-wise linear parameterization such aswidely used in finite element methods seems to be themost natural. However, there is a fundamental dif-ference between these two discretizations: in finiteelement analysis, the objective is purely to approx-imate the solution; in the discretization of LKF, it isalso necessary to guarantee the satisfaction of quad-raticinequalities.Therefore,thediscretizationofLKFis a much more sophisticated process.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":"2 1","pages":"95-96"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/ejc.15.95-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

performance requirement, and design of state feed-backcontrol.Asisnowwellknown,inordertoobtainstability conditions using Lyapunov-Krasovskiifunctional (LKF) approach, it is necessary to use acomplete quadratic LKF, as is done in this article. Asa general quadratic functional involve infinite numberof parameters, some discretization process is neces-sary in order to render conditions in a computableform. A piece-wise linear parameterization such aswidely used in finite element methods seems to be themost natural. However, there is a fundamental dif-ference between these two discretizations: in finiteelement analysis, the objective is purely to approx-imate the solution; in the discretization of LKF, it isalso necessary to guarantee the satisfaction of quad-raticinequalities.Therefore,thediscretizationofLKFis a much more sophisticated process.
关于“离散Lyapunov泛函对分布和离散延迟系统的H∞控制”的讨论
性能要求,状态反馈控制设计。众所周知,为了使用lyapunov - krasovskiy函数(LKF)方法获得稳定性条件,有必要使用完全二次LKF,正如本文所做的那样。一般的二次泛函涉及无穷多个参数,为了使条件具有可计算的形式,需要进行一些离散化处理。在有限元方法中广泛使用的分段线性参数化似乎是最自然的。然而,这两种离散化之间有一个根本的区别:在有限元分析中,目标纯粹是近似解;在LKF的离散化中,还需要保证二次不等式的满足性。因此,flkfi的离散化是一个更为复杂的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信