Application of the Fog Computing Paradigm to Additive Manufacturing Process Monitoring and Control

Muhammad Adnan, Yan Lu, Albert T. Jones, F. Cheng
{"title":"Application of the Fog Computing Paradigm to Additive Manufacturing Process Monitoring and Control","authors":"Muhammad Adnan, Yan Lu, Albert T. Jones, F. Cheng","doi":"10.2139/ssrn.3785854","DOIUrl":null,"url":null,"abstract":"Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in enabling the production of quality parts. AM processes generate large volumes of structured and unstructured in-situ measurement data. The ability to analyze this volume and variety of data in real-time is necessary for effective closed-loop control and decision-making. Existing control architectures are unable to handle this level of data volume and speed. This paper investigates the functional and computational requirements for real-time closed-loop AM process control. The paper uses those requirements to propose a function architecture for AM process monitoring and control. That architecture leads to a fog-computing solution to address the big data and real-time control challenges.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"237 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3785854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in enabling the production of quality parts. AM processes generate large volumes of structured and unstructured in-situ measurement data. The ability to analyze this volume and variety of data in real-time is necessary for effective closed-loop control and decision-making. Existing control architectures are unable to handle this level of data volume and speed. This paper investigates the functional and computational requirements for real-time closed-loop AM process control. The paper uses those requirements to propose a function architecture for AM process monitoring and control. That architecture leads to a fog-computing solution to address the big data and real-time control challenges.
雾计算范式在增材制造过程监控中的应用
监测和控制增材制造(AM)过程在实现高质量零件的生产中起着至关重要的作用。增材制造过程产生大量结构化和非结构化的原位测量数据。实时分析这种数量和种类的数据的能力对于有效的闭环控制和决策是必要的。现有的控制体系结构无法处理这种级别的数据量和速度。本文研究了实时闭环增材制造过程控制的功能和计算要求。本文根据这些需求,提出了增材制造过程监控的功能体系结构。该架构带来了雾计算解决方案,以应对大数据和实时控制挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信