Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices

E. Knehr, M. Ziegler, S. Linzen, K. Ilin, P. Schanz, J. Plentz, M. Diegel, H. Schmidt, E. Il'ichev, M. Siegel
{"title":"Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices","authors":"E. Knehr, M. Ziegler, S. Linzen, K. Ilin, P. Schanz, J. Plentz, M. Diegel, H. Schmidt, E. Il'ichev, M. Siegel","doi":"10.1116/6.0001126","DOIUrl":null,"url":null,"abstract":"Superconducting niobium nitride thin films are used for a variety of photon detectors, quantum devices, and superconducting electronics. Most of these applications require highly uniform films, for instance, when moving from single-pixel detectors to arrays with a large active area. Plasma-enhanced atomic layer deposition (ALD) of superconducting niobium nitride is a feasible option to produce high-quality, conformal thin films and has been demonstrated as a film deposition method to fabricate superconducting nanowire single-photon detectors before. Here, we explore the property spread of ALD-NbN across a 6-in. wafer area. Over the equivalent area of a 2-in. wafer, we measure a maximum deviation of 1% in critical temperature and 12% in switching current. Toward larger areas, structural characterizations indicate that changes in the crystal structure seem to be the limiting factor rather than film composition or impurities. The results show that ALD is suited to fabricate NbN thin films as a material for large-area detector arrays and for new detector designs and devices requiring uniform superconducting thin films with precise thickness control.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Superconducting niobium nitride thin films are used for a variety of photon detectors, quantum devices, and superconducting electronics. Most of these applications require highly uniform films, for instance, when moving from single-pixel detectors to arrays with a large active area. Plasma-enhanced atomic layer deposition (ALD) of superconducting niobium nitride is a feasible option to produce high-quality, conformal thin films and has been demonstrated as a film deposition method to fabricate superconducting nanowire single-photon detectors before. Here, we explore the property spread of ALD-NbN across a 6-in. wafer area. Over the equivalent area of a 2-in. wafer, we measure a maximum deviation of 1% in critical temperature and 12% in switching current. Toward larger areas, structural characterizations indicate that changes in the crystal structure seem to be the limiting factor rather than film composition or impurities. The results show that ALD is suited to fabricate NbN thin films as a material for large-area detector arrays and for new detector designs and devices requiring uniform superconducting thin films with precise thickness control.
量子器件原子层沉积氮化铌薄膜的片级均匀性
超导氮化铌薄膜用于各种光子探测器、量子器件和超导电子器件。大多数这些应用需要高度均匀的薄膜,例如,当从单像素探测器移动到具有大有源区域的阵列时。等离子体增强原子层沉积(ALD)超导氮化铌是制备高质量保形薄膜的一种可行选择,并已被证明是一种制备超导纳米线单光子探测器的薄膜沉积方法。在这里,我们探索了ALD-NbN在6-in的属性分布。晶片区域。除以2英寸的等量面积。我们测量了临界温度和开关电流的最大偏差分别为1%和12%。对于更大的区域,结构表征表明晶体结构的变化似乎是限制因素,而不是薄膜成分或杂质。结果表明,ALD适合制造NbN薄膜,作为大面积探测器阵列的材料,以及需要均匀超导薄膜和精确厚度控制的新型探测器设计和器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信