Gabriele Buondonno, Justin Carpentier, Guilhem Saurel, N. Mansard, Alessandro De Luca, J. Laumond
{"title":"Actuator design of compliant walkers via optimal control","authors":"Gabriele Buondonno, Justin Carpentier, Guilhem Saurel, N. Mansard, Alessandro De Luca, J. Laumond","doi":"10.1109/IROS.2017.8202228","DOIUrl":null,"url":null,"abstract":"We present an optimization framework for the design and analysis of underactuated biped walkers, characterized by passive or actuated joints with rigid or non-negligible elastic actuation/transmission elements. The framework is based on optimal control, dealing with geometric constraints and various dynamic objective functions, as well as boundary conditions, which helps in selecting optimal values both for the actuation and the transmission parameters. Solutions of the formulated problems are shown for different kinds of bipedal architectures, and comparisons drawn between traditional rigid robots and compliant ones show the energy-efficiency of compliant actuators in the context of locomotion.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"13 1","pages":"705-711"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8202228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We present an optimization framework for the design and analysis of underactuated biped walkers, characterized by passive or actuated joints with rigid or non-negligible elastic actuation/transmission elements. The framework is based on optimal control, dealing with geometric constraints and various dynamic objective functions, as well as boundary conditions, which helps in selecting optimal values both for the actuation and the transmission parameters. Solutions of the formulated problems are shown for different kinds of bipedal architectures, and comparisons drawn between traditional rigid robots and compliant ones show the energy-efficiency of compliant actuators in the context of locomotion.