Multi-objective optimization problems: Method and application

Fatimah Sham, Ismail, K. Lumpur., Malaysia
{"title":"Multi-objective optimization problems: Method and application","authors":"Fatimah Sham, Ismail, K. Lumpur., Malaysia","doi":"10.1109/ICMSAO.2011.5775623","DOIUrl":null,"url":null,"abstract":"Self organizing genetic algorithm (SOGA) is a class of heuristic multi-objective optimization method that has high capabilities for solving multiple conflicting objective functions. This paper presents an application of SOGA for optimizing multi-objectives components placement of multi voltage regulator (MVR) system on printed circuit board by considering multi-constraint parameters. The simulation results, which are developed based on experimental measurement, show that the SOGA can propose better optimal solution compared to the initial design.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Self organizing genetic algorithm (SOGA) is a class of heuristic multi-objective optimization method that has high capabilities for solving multiple conflicting objective functions. This paper presents an application of SOGA for optimizing multi-objectives components placement of multi voltage regulator (MVR) system on printed circuit board by considering multi-constraint parameters. The simulation results, which are developed based on experimental measurement, show that the SOGA can propose better optimal solution compared to the initial design.
多目标优化问题:方法与应用
自组织遗传算法(SOGA)是一类启发式多目标优化方法,具有求解多个相互冲突的目标函数的能力。本文提出了一种基于多约束参数的SOGA优化多电压调节器(MVR)系统多目标元件在印刷电路板上布局的方法。基于实验测量的仿真结果表明,与初始设计相比,SOGA可以给出更好的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信