Acousto-optic scanning spatial-switching multiphoton lithography

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Binzhang Jiao, Fayu Chen, Yuncheng Liu, Xuhao Fan, Shaoqun Zeng, Qi Dong, Leimin Deng, Hui Gao, Wei Xiong
{"title":"Acousto-optic scanning spatial-switching multiphoton lithography","authors":"Binzhang Jiao, Fayu Chen, Yuncheng Liu, Xuhao Fan, Shaoqun Zeng, Qi Dong, Leimin Deng, Hui Gao, Wei Xiong","doi":"10.1088/2631-7990/ace0a7","DOIUrl":null,"url":null,"abstract":"Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years. Multiphoton lithography (MPL) is one of the most promising 3D nanomanufacturing technologies, which has been widely used in manufacturing micro-optics, photonic crystals, microfluidics, meta-surface, and mechanical metamaterials. Despite of tremendous potential of MPL in laboratorial and industrial applications, simultaneous achievement of high throughput, high accuracy, high design freedom, and a broad range of material structuring capabilities remains a long-pending challenge. To address the issue, we propose an acousto-optic scanning with spatial-switching multispots (AOSS) method. Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning. Moreover, a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom. An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6 × 107 voxel s−1, which is nearly one order of magnitude higher than earlier scanning MPL, exhibiting its promise for future scalable 3D nanomanufacturing.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"49 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ace0a7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years. Multiphoton lithography (MPL) is one of the most promising 3D nanomanufacturing technologies, which has been widely used in manufacturing micro-optics, photonic crystals, microfluidics, meta-surface, and mechanical metamaterials. Despite of tremendous potential of MPL in laboratorial and industrial applications, simultaneous achievement of high throughput, high accuracy, high design freedom, and a broad range of material structuring capabilities remains a long-pending challenge. To address the issue, we propose an acousto-optic scanning with spatial-switching multispots (AOSS) method. Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning. Moreover, a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom. An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6 × 107 voxel s−1, which is nearly one order of magnitude higher than earlier scanning MPL, exhibiting its promise for future scalable 3D nanomanufacturing.
声光扫描空间开关多光子光刻技术
近年来,纳米3d打印因其具有制造具有纳米级特征的最终用途部件的能力而受到广泛关注。多光子光刻技术(MPL)是最具发展前景的三维纳米制造技术之一,已广泛应用于制造微光学、光子晶体、微流体、元表面和机械超材料等领域。尽管MPL在实验室和工业应用中具有巨大的潜力,但同时实现高通量、高精度、高设计自由度和广泛的材料结构能力仍然是一个长期悬而未决的挑战。为了解决这个问题,我们提出了一种空间切换多点声光扫描方法。为实现超高速、无像差扫描,发展了无惯性声光扫描和非线性扫描技术。此外,还实现了空间光开关概念,以显着提高光刻吞吐量,同时保持高分辨率和高设计自由度。8焦AOSS系统的3D打印速率达到了创纪录的7.6 × 107体素s−1,比之前的扫描MPL高了近一个数量级,显示出其在未来可扩展的3D纳米制造领域的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信