{"title":"Metaheuristics-based energy efficient clustering in WSNs: challenges and research contributions","authors":"Richa Sharma, Vasudha Vashisht, Umang Singh","doi":"10.1049/iet-wss.2020.0102","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In past few years, wireless sensor network (WSN) is considered as an essential and imperative way for efficient data communication in ubiquitous computing environment along with the fulfilment of objectives such as (i) lifetime enhancement and (ii) energy conservation. Till date, the research findings demonstrate that clustering of WSNs is an effective and pertinent approach. Moreover, designing of energy-aware routing schemes for clustered WSNs is a basic necessity due to resource-restricted nature of these sensor nodes. This study has a twofold contribution. First, the research dimensions of WSNs are explained by incorporating recent work carried out as per findings in real scenarios. Secondly, this study presents a comprehensive survey of existing clustering schemes for WSNs based on metaheuristic techniques. This study is beneficial for researchers of this domain as it surveys the literature over the period 2000–2020 on energy efficiency in clustered WSNs.</p>\n </div>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-wss.2020.0102","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-wss.2020.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 6
Abstract
In past few years, wireless sensor network (WSN) is considered as an essential and imperative way for efficient data communication in ubiquitous computing environment along with the fulfilment of objectives such as (i) lifetime enhancement and (ii) energy conservation. Till date, the research findings demonstrate that clustering of WSNs is an effective and pertinent approach. Moreover, designing of energy-aware routing schemes for clustered WSNs is a basic necessity due to resource-restricted nature of these sensor nodes. This study has a twofold contribution. First, the research dimensions of WSNs are explained by incorporating recent work carried out as per findings in real scenarios. Secondly, this study presents a comprehensive survey of existing clustering schemes for WSNs based on metaheuristic techniques. This study is beneficial for researchers of this domain as it surveys the literature over the period 2000–2020 on energy efficiency in clustered WSNs.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.