Explainability of deep learning models in medical image classification

Michal Kolárik, M. Sarnovský, Ján Paralič, P. Butka
{"title":"Explainability of deep learning models in medical image classification","authors":"Michal Kolárik, M. Sarnovský, Ján Paralič, P. Butka","doi":"10.1109/CINTI-MACRo57952.2022.10029502","DOIUrl":null,"url":null,"abstract":"The ability to explain the reasons for one’s decisions to others is an important aspect of being human intelligence. We will look at the explainability aspects of the deep learning models, which are most frequently used in medical image processing tasks. The Explainability of machine learning models in medicine is essential for understanding how the particular ML model works and how it solves the problems it was designed for. The work presented in this paper focuses on the classification of lung CT scans for the detection of COVID-19 patients. We used CNN and DenseNet models for the classification and explored the application of selected visual explainability techniques to provide insight into how the model works when processing the images.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"11 1","pages":"000233-000238"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to explain the reasons for one’s decisions to others is an important aspect of being human intelligence. We will look at the explainability aspects of the deep learning models, which are most frequently used in medical image processing tasks. The Explainability of machine learning models in medicine is essential for understanding how the particular ML model works and how it solves the problems it was designed for. The work presented in this paper focuses on the classification of lung CT scans for the detection of COVID-19 patients. We used CNN and DenseNet models for the classification and explored the application of selected visual explainability techniques to provide insight into how the model works when processing the images.
深度学习模型在医学图像分类中的可解释性
向他人解释一个人的决定的原因的能力是人类智力的一个重要方面。我们将研究深度学习模型的可解释性方面,深度学习模型最常用于医学图像处理任务。医学中机器学习模型的可解释性对于理解特定ML模型如何工作以及如何解决其设计的问题至关重要。本文的工作重点是肺部CT扫描的分类,用于检测COVID-19患者。我们使用CNN和DenseNet模型进行分类,并探索了选定的视觉可解释性技术的应用,以深入了解模型在处理图像时是如何工作的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信