Dynamics Simulation of Biped Robot with Arch Structure and Toe Joint

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Reona Nekomoto, A. Sekiguchi
{"title":"Dynamics Simulation of Biped Robot with Arch Structure and Toe Joint","authors":"Reona Nekomoto, A. Sekiguchi","doi":"10.20965/jaciii.2023.p0404","DOIUrl":null,"url":null,"abstract":"The arch structure of human foot absorbs impact and assists push-off movements during walking. The objective of this study is to introduce arch structures and toe joints into a biped robot, verify the effects, and devise walk control methods by dynamics simulation. We simulated the upright state and start of walking using Choreonoid. The results confirmed that the arch structure improved the impact absorption and stability in the anteroposterior direction. In addition, the arch structure could be expected to smooth the load transfer between the supporting legs during the step change.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"35 1","pages":"404-410"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The arch structure of human foot absorbs impact and assists push-off movements during walking. The objective of this study is to introduce arch structures and toe joints into a biped robot, verify the effects, and devise walk control methods by dynamics simulation. We simulated the upright state and start of walking using Choreonoid. The results confirmed that the arch structure improved the impact absorption and stability in the anteroposterior direction. In addition, the arch structure could be expected to smooth the load transfer between the supporting legs during the step change.
具有足弓结构和足趾关节的两足机器人动力学仿真
人的足弓结构吸收冲击,并协助推动运动在走路。本研究的目的是将足弓结构和足趾关节引入双足机器人,并通过动力学仿真验证其效果,设计步行控制方法。我们使用Choreonoid模拟直立状态和步行开始。结果证实,弓形结构改善了前后方向的冲击吸收和稳定性。此外,在台阶变化过程中,拱结构可以平滑支撑腿之间的荷载传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信