Computational Lithography Using Machine Learning Models

Q4 Engineering
Y. Shin
{"title":"Computational Lithography Using Machine Learning Models","authors":"Y. Shin","doi":"10.2197/ipsjtsldm.14.2","DOIUrl":null,"url":null,"abstract":"Machine learning models have been applied to a wide range of computational lithography applications since around 2010. They provide higher modeling capability, so their application allows modeling of higher accuracy. Many applications which are computationally expensive can take advantage of machine learning models, since a well trained model provides a quick estimation of outcome. This tutorial reviews a number of such computational lithography applications that have been using machine learning models. They include mask optimization with OPC (optical proximity correction) and EPC (etch proximity correction), assist features insertion and their printability check, lithography modeling with optical model and resist model, test patterns, and hotspot detection and correction.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":"76 1","pages":"2-10"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.14.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Machine learning models have been applied to a wide range of computational lithography applications since around 2010. They provide higher modeling capability, so their application allows modeling of higher accuracy. Many applications which are computationally expensive can take advantage of machine learning models, since a well trained model provides a quick estimation of outcome. This tutorial reviews a number of such computational lithography applications that have been using machine learning models. They include mask optimization with OPC (optical proximity correction) and EPC (etch proximity correction), assist features insertion and their printability check, lithography modeling with optical model and resist model, test patterns, and hotspot detection and correction.
使用机器学习模型的计算光刻
自2010年左右以来,机器学习模型已广泛应用于计算光刻应用。它们提供了更高的建模能力,因此它们的应用程序允许更高精度的建模。许多计算成本高的应用程序可以利用机器学习模型,因为训练有素的模型可以快速估计结果。本教程回顾了一些使用机器学习模型的计算光刻应用。它们包括使用OPC(光学接近校正)和EPC(蚀刻接近校正)的掩模优化,辅助特征插入及其可印刷性检查,使用光学模型和抗蚀剂模型的光刻建模,测试模式以及热点检测和校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信