K. Ovsejevi, Gabriela Peralta-Altier, C. Manta, Sift Desk Journals Open Access Journals
{"title":"Thiol-Cyclodextrin: A New Agent For Controlling The Catalytic Activity Of Polyphenol Oxidase From Red Delicious Apple","authors":"K. Ovsejevi, Gabriela Peralta-Altier, C. Manta, Sift Desk Journals Open Access Journals","doi":"10.25177/jfst.3.2.2","DOIUrl":null,"url":null,"abstract":"Polyphenol oxidase (PPO, EC 1.14.18.1) is the main enzyme responsible for enzymatic browning, a natural process which produces deterioration of fruits and vegetables. One alternative to prevent this undesirable process is to inhibit the catalytic activity of PPO by encapsulating enzyme’s substrates in cyclodextrins (CD). In this article the effect of a Thiol-CD on PPO from Red Delicious apple was studied, demonstrating that this compound is a powerful tool for controlling oxidative processes in food. Thiol-CD could encapsulate the polyphenols, natural substrates of the enzyme, by means of the cyclodextrin hydrophobic internal cavity. Simultaneously, through the thiol group, it could inactivate the PPO by reducing the copper ions from the active site of the enzyme. Moreover, thiol moieties could decrease the browning by reducing the quinones generated by oxidative processes. The isolation and purification of PPO from apple was performed in order to study those effects, different polyphenols, chlorogenic acid (CA) and 4-methylcatechol (4-MC), were assayed as enzymatic substrates. Both β -CD and Thiol-CD exhibited better enzyme inhibition value for CA than for 4-MC. Moreover, Thiol-CD showed an extraordinary performance compared with β-CD. When CA 10 mM was used, 5 mM β-CD gave 11 % PPO inhibition, meanwhile nearly 100 times less concentration of Thiol-CD (45 μM) gave 100 % of enzyme inhibition.","PeriodicalId":16004,"journal":{"name":"Journal of Food Science and Technology-mysore","volume":"43 1","pages":"1-8"},"PeriodicalIF":2.6000,"publicationDate":"2018-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology-mysore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25177/jfst.3.2.2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Polyphenol oxidase (PPO, EC 1.14.18.1) is the main enzyme responsible for enzymatic browning, a natural process which produces deterioration of fruits and vegetables. One alternative to prevent this undesirable process is to inhibit the catalytic activity of PPO by encapsulating enzyme’s substrates in cyclodextrins (CD). In this article the effect of a Thiol-CD on PPO from Red Delicious apple was studied, demonstrating that this compound is a powerful tool for controlling oxidative processes in food. Thiol-CD could encapsulate the polyphenols, natural substrates of the enzyme, by means of the cyclodextrin hydrophobic internal cavity. Simultaneously, through the thiol group, it could inactivate the PPO by reducing the copper ions from the active site of the enzyme. Moreover, thiol moieties could decrease the browning by reducing the quinones generated by oxidative processes. The isolation and purification of PPO from apple was performed in order to study those effects, different polyphenols, chlorogenic acid (CA) and 4-methylcatechol (4-MC), were assayed as enzymatic substrates. Both β -CD and Thiol-CD exhibited better enzyme inhibition value for CA than for 4-MC. Moreover, Thiol-CD showed an extraordinary performance compared with β-CD. When CA 10 mM was used, 5 mM β-CD gave 11 % PPO inhibition, meanwhile nearly 100 times less concentration of Thiol-CD (45 μM) gave 100 % of enzyme inhibition.
期刊介绍:
The Journal of Food Science and Technology (JFST) is the official publication of the Association of Food Scientists and Technologists of India (AFSTI). This monthly publishes peer-reviewed research papers and reviews in all branches of science, technology, packaging and engineering of foods and food products. Special emphasis is given to fundamental and applied research findings that have potential for enhancing product quality, extend shelf life of fresh and processed food products and improve process efficiency. Critical reviews on new perspectives in food handling and processing, innovative and emerging technologies and trends and future research in food products and food industry byproducts are also welcome. The journal also publishes book reviews relevant to all aspects of food science, technology and engineering.