Elastic Thermobarometry

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS
M. Kohn, M. Mazzucchelli, M. Alvaro
{"title":"Elastic Thermobarometry","authors":"M. Kohn, M. Mazzucchelli, M. Alvaro","doi":"10.1146/annurev-earth-031621-112720","DOIUrl":null,"url":null,"abstract":"Upon exhumation and cooling, contrasting compressibilities and thermal expansivities induce differential strains (volume mismatches) between a host crystal and its inclusions. These strains can be quantified in situ using Raman spectroscopy or X-ray diffraction. Knowing equations of state and elastic properties of minerals, elastic thermobarometry inverts measured strains to calculate the pressure-temperature conditions under which the stress state was uniform in the host and inclusion. These are commonly interpreted to represent the conditions of inclusion entrapment. Modeling and experiments quantify corrections for inclusion shape, proximity to surfaces, and (most importantly) crystal-axis anisotropy, and they permit accurate application of the more common elastic thermobarometers. New research is exploring the conditions of crystal growth, reaction overstepping, and the magnitudes of differential stresses, as well as inelastic resetting of inclusion and host strain, and potential new thermobarometers for lower-symmetry minerals. ▪ A physics-based method is revolutionizing calculations of metamorphic pressures and temperatures. ▪ Inclusion shape, crystal anisotropy, and proximity to boundaries affect calculations but can be corrected for. ▪ New results are leading petrologists to reconsider pressure-temperature conditions, differential stresses, and thermodynamic equilibrium. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"14 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-031621-112720","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Upon exhumation and cooling, contrasting compressibilities and thermal expansivities induce differential strains (volume mismatches) between a host crystal and its inclusions. These strains can be quantified in situ using Raman spectroscopy or X-ray diffraction. Knowing equations of state and elastic properties of minerals, elastic thermobarometry inverts measured strains to calculate the pressure-temperature conditions under which the stress state was uniform in the host and inclusion. These are commonly interpreted to represent the conditions of inclusion entrapment. Modeling and experiments quantify corrections for inclusion shape, proximity to surfaces, and (most importantly) crystal-axis anisotropy, and they permit accurate application of the more common elastic thermobarometers. New research is exploring the conditions of crystal growth, reaction overstepping, and the magnitudes of differential stresses, as well as inelastic resetting of inclusion and host strain, and potential new thermobarometers for lower-symmetry minerals. ▪ A physics-based method is revolutionizing calculations of metamorphic pressures and temperatures. ▪ Inclusion shape, crystal anisotropy, and proximity to boundaries affect calculations but can be corrected for. ▪ New results are leading petrologists to reconsider pressure-temperature conditions, differential stresses, and thermodynamic equilibrium. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
弹性Thermobarometry
在挖掘和冷却后,不同的压缩率和热膨胀率会导致宿主晶体和其内含物之间的差异应变(体积不匹配)。这些菌株可以用拉曼光谱或x射线衍射在原位定量。弹性热压法根据矿物的状态方程和弹性特性,对实测应变进行反演,计算出宿主和包裹体中应力状态均匀的压力-温度条件。这些通常被解释为包含夹持的条件。建模和实验量化了夹杂物形状、接近表面和(最重要的)晶体轴各向异性的修正,并且它们允许更常见的弹性温度计的准确应用。新的研究正在探索晶体生长条件、反应超越、差应力的大小,以及包裹体和宿主应变的非弹性重置,以及潜在的低对称性矿物的新温压表。▪一种基于物理学的方法正在彻底改变变质压力和温度的计算。内含物形状、晶体各向异性和接近边界会影响计算,但可以进行校正。新的结果使岩石学家重新考虑压力-温度条件、差应力和热力学平衡。《地球与行星科学年鉴》第51卷的最终在线出版日期预计为2023年5月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信