{"title":"Mixed convection heat transfer in a partially heated parallel plate vertical channel","authors":"H. Celik, M. Mobedi","doi":"10.1109/ITHERM.2014.6892345","DOIUrl":null,"url":null,"abstract":"Laminar mixed convection heat transfer in a two dimensional symmetrically and partially heated vertical channel is investigated. The heated portions exist on the both walls of channel and their temperature is constant. The number of the heated portions is changed from 2 to 4 for each wall; however the total length of the heated portions is fixed. The fluid inlet velocity is uniform and air is taken as working fluid. The continuity, momentum and energy equations are solved numerically by using finite volume method. Results are compared with available studies in literature and good agreement is observed. The velocity and temperature fields are obtained for Gr / Re2 = 0.0033 and 13.33. Based on the obtained temperature distributions, the change of local Nusselt number for different number of heated portions are obtained and plotted. The variation of the mean Nusselt number with the number of heated portions is also discussed.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"75 1","pages":"666-672"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Laminar mixed convection heat transfer in a two dimensional symmetrically and partially heated vertical channel is investigated. The heated portions exist on the both walls of channel and their temperature is constant. The number of the heated portions is changed from 2 to 4 for each wall; however the total length of the heated portions is fixed. The fluid inlet velocity is uniform and air is taken as working fluid. The continuity, momentum and energy equations are solved numerically by using finite volume method. Results are compared with available studies in literature and good agreement is observed. The velocity and temperature fields are obtained for Gr / Re2 = 0.0033 and 13.33. Based on the obtained temperature distributions, the change of local Nusselt number for different number of heated portions are obtained and plotted. The variation of the mean Nusselt number with the number of heated portions is also discussed.