{"title":"Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies.","authors":"Stefan Tukaj, Grzegorz Węgrzyn","doi":"10.1007/s12192-016-0670-z","DOIUrl":null,"url":null,"abstract":"<p><p>Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies. </p>","PeriodicalId":9812,"journal":{"name":"Cell Stress and Chaperones","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress and Chaperones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12192-016-0670-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic 'client' proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases' features and is based solely on preclinical studies.