Variance Sensitivity Analysis of Parameters for Pruning of a Multilayer Perceptron: Application to a Sawmill Supply Chain Simulation Model

P. Thomas, M. Suhner, André Thomas
{"title":"Variance Sensitivity Analysis of Parameters for Pruning of a Multilayer Perceptron: Application to a Sawmill Supply Chain Simulation Model","authors":"P. Thomas, M. Suhner, André Thomas","doi":"10.1155/2013/284570","DOIUrl":null,"url":null,"abstract":"Simulation is a useful tool for the evaluation of a Master Production/Distribution Schedule (MPS). The goal of this paper is to propose a new approach to designing a simulation model by reducing its complexity. According to the theory of constraints, a reduced model is built using bottlenecks and a neural network exclusively. This paper focuses on one step of the network model design: determining the structure of the network. This task may be performed by using the constructive or pruning approaches. The main contribution of this paper is twofold; it first proposes a new pruning algorithm based on an analysis of the variance of the sensitivity of all parameters of the network and then uses this algorithm to reduce the simulation model of a sawmill supply chain. In the first step, the proposed pruning algorithm is tested with two simulation examples and compared with three classical pruning algorithms fromthe literature. In the second step, these four algorithms are used to determine the optimal structure of the network used for the complexity-reduction design procedure of the simulation model of a sawmill supply chain.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"117 1","pages":"284570:1-284570:17"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/284570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Simulation is a useful tool for the evaluation of a Master Production/Distribution Schedule (MPS). The goal of this paper is to propose a new approach to designing a simulation model by reducing its complexity. According to the theory of constraints, a reduced model is built using bottlenecks and a neural network exclusively. This paper focuses on one step of the network model design: determining the structure of the network. This task may be performed by using the constructive or pruning approaches. The main contribution of this paper is twofold; it first proposes a new pruning algorithm based on an analysis of the variance of the sensitivity of all parameters of the network and then uses this algorithm to reduce the simulation model of a sawmill supply chain. In the first step, the proposed pruning algorithm is tested with two simulation examples and compared with three classical pruning algorithms fromthe literature. In the second step, these four algorithms are used to determine the optimal structure of the network used for the complexity-reduction design procedure of the simulation model of a sawmill supply chain.
多层感知器剪枝参数的方差敏感性分析:在锯木厂供应链仿真模型中的应用
模拟是评估主生产/分配计划(MPS)的有用工具。本文的目的是通过降低仿真模型的复杂度,提出一种设计仿真模型的新方法。根据约束理论,利用瓶颈和神经网络建立了简化模型。本文重点研究了网络模型设计的一个步骤:确定网络的结构。这项任务可以通过使用建设性或修剪方法来完成。本文的主要贡献有两个方面;首先在分析网络各参数灵敏度方差的基础上提出了一种新的剪枝算法,然后利用该算法对某锯木厂供应链的仿真模型进行约简。首先,通过两个仿真算例对所提出的剪枝算法进行了验证,并与文献中的三种经典剪枝算法进行了比较。第二步,利用这四种算法确定网络的最优结构,用于木材厂供应链仿真模型的降复杂度设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信