Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings

Deepti Moyi Sahoo, S. Chakraverty
{"title":"Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings","authors":"Deepti Moyi Sahoo, S. Chakraverty","doi":"10.1155/2013/962734","DOIUrl":null,"url":null,"abstract":"The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN) models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form), but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"33 1","pages":"962734:1-962734:12"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/962734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN) models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form), but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated.
基于模糊数据的多层抗剪建筑健康评估神经网络建模
本研究旨在利用人工神经网络(ANN)模型的强大技术来处理模糊数据,提出多层受剪建筑的识别方法。用清晰的数据进行识别是已知的,神经网络方法也已经被各种研究人员用于这种情况。在这里,输入和输出数据可能是模糊的形式。这是因为在一般情况下,我们可能无法准确地(以清晰的形式)获得相应的输入和输出值,而我们只有数据的不确定信息。将该不确定数据用模糊数的形式进行假设,并研究了相应的系统辨识问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信