Imtiaz Ul Hassan, Huma Zia, H. S. Fatima, S. Yusuf, M. Khurram
{"title":"A Lightweight Convolutional Neural Network to Predict Steering Angle for Autonomous Driving Using CARLA Simulator","authors":"Imtiaz Ul Hassan, Huma Zia, H. S. Fatima, S. Yusuf, M. Khurram","doi":"10.1155/2022/5716820","DOIUrl":null,"url":null,"abstract":"End-to-end learning for autonomous driving uses a convolutional neural network (CNN) to predict the steering angle from a raw image input. Most of the solutions available for end-to-end autonomous driving are computationally too expensive, which increases the inference of autonomous driving in real time. Therefore, in this paper, CNN architecture has been trained which is lightweight and achieves comparable results to Nvidia’s PilotNet. The data used to train and evaluate the network is collected from the Car Learning to Act (CARLA) simulator. To evaluate the proposed architecture, the MSE (mean squared error) is used as the performance metric. Results of the experiment shows that the proposed model is 4x lighter than Nvidia’s PilotNet in term of parameters but still attains comparable results to PilotNet. The proposed model has achieved \n \n 5.1\n ×\n \n \n 10\n \n \n −\n 4\n \n \n \n MSE on testing data while PilotNet MSE was \n \n 4.7\n ×\n \n \n 10\n \n \n −\n 4\n \n \n \n .","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5716820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
End-to-end learning for autonomous driving uses a convolutional neural network (CNN) to predict the steering angle from a raw image input. Most of the solutions available for end-to-end autonomous driving are computationally too expensive, which increases the inference of autonomous driving in real time. Therefore, in this paper, CNN architecture has been trained which is lightweight and achieves comparable results to Nvidia’s PilotNet. The data used to train and evaluate the network is collected from the Car Learning to Act (CARLA) simulator. To evaluate the proposed architecture, the MSE (mean squared error) is used as the performance metric. Results of the experiment shows that the proposed model is 4x lighter than Nvidia’s PilotNet in term of parameters but still attains comparable results to PilotNet. The proposed model has achieved
5.1
×
10
−
4
MSE on testing data while PilotNet MSE was
4.7
×
10
−
4
.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.