E. Simoen, S. Jayachandran, A. Delabie, M. Caymax, M. Heyns
{"title":"Study of Electron Traps Associated With Oxygen Superlattices in n‐Type Silicon","authors":"E. Simoen, S. Jayachandran, A. Delabie, M. Caymax, M. Heyns","doi":"10.1002/PSSC.201700136","DOIUrl":null,"url":null,"abstract":"In this paper, the deep levels found by Deep-Level Transient Spectroscopy in Si-O superlattices (SLs) on n-type silicon are reported. Samples have been grown with one, two or five silicon-oxygen layers, separated by 3 nm of silicon. A Cr Schottky barrier (SB) is thermally evaporated on top of the SL. Similar as for p-type silicon, no deep levels have been found for a bias pulse in depletion, while a broad distribution of electron traps shows up when pulsing into forward bias. At the same time, these bands are absent in a zero SL reference sample. Similar as for the p-type results, the trap filling of the electron states exhibits a logarithmic capture. The possible origin of this slow filling will be discussed.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the deep levels found by Deep-Level Transient Spectroscopy in Si-O superlattices (SLs) on n-type silicon are reported. Samples have been grown with one, two or five silicon-oxygen layers, separated by 3 nm of silicon. A Cr Schottky barrier (SB) is thermally evaporated on top of the SL. Similar as for p-type silicon, no deep levels have been found for a bias pulse in depletion, while a broad distribution of electron traps shows up when pulsing into forward bias. At the same time, these bands are absent in a zero SL reference sample. Similar as for the p-type results, the trap filling of the electron states exhibits a logarithmic capture. The possible origin of this slow filling will be discussed.