{"title":"Non-loose negative torus knots","authors":"Irena Matkovič","doi":"10.4171/qt/169","DOIUrl":null,"url":null,"abstract":"We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$. \nAdditionally, we study the Legendrian invariants of these knots in the minus version of the knot Floer homology, obtaining that $U\\cdot\\mathfrak L(L)$ vanishes for any Legendrian negative torus knot $L$ in any overtwisted structure, and that the strongly non-loose transverse realizations $T$ are characterized by having non-zero invariant $\\mathfrak T(T)$. \nAlong the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p^2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We study Legendrian and transverse realizations of the negative torus knots $T_{(p,-q)}$ in all contact structures on the $3$-sphere. We give a complete classification of the strongly non-loose transverse realizations and the strongly non-loose Legendrian realizations with the Thurston-Bennequin invariant smaller than $-pq$.
Additionally, we study the Legendrian invariants of these knots in the minus version of the knot Floer homology, obtaining that $U\cdot\mathfrak L(L)$ vanishes for any Legendrian negative torus knot $L$ in any overtwisted structure, and that the strongly non-loose transverse realizations $T$ are characterized by having non-zero invariant $\mathfrak T(T)$.
Along the way, we relate our Legendrian realizations to the tight contact structures on the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens spaces $L(pq+1,p^2)$ as a single Legendrian surgery on a Legendrian $T_{(p,-q)}$, and we relate transverse realizations in overtwisted structures to the non-fillable tight structures on the large negative surgeries along the underlying knots.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.