Z. Wen, Qihao Yu, Dayan Wang, Guo-yu Li, Jianming Zhang
{"title":"Risk Evaluation of Frost Jacking for Tower Foundations along Qinghai-Tibetan Transmission Line and Anti-Heave Measures","authors":"Z. Wen, Qihao Yu, Dayan Wang, Guo-yu Li, Jianming Zhang","doi":"10.1061/9780784412473.057","DOIUrl":null,"url":null,"abstract":"The Qinghai-Tibetan ±400 kV direct current grid interconnection project runs across 1038 km of permafrost and seasonally frozen-ground in the interior of the Qinghai-Tibetan Plateau. The mean annual air temperature of the Qinghai-Tibetan Plateau varies between -3 ℃ and -7 and the minimum air temperature ℃ is lower than -37 in short durations. The active ℃ layer is subjected to annual freeze-thaw cycle and its thickness varies between 2 m and 3 m. significant heave force is expected due to the existence of extensive frost susceptible soils and cold weather. The tower foundations tend to be jacked out of the ground and result in expensive maintenance costs and foundation failure, which significantly threatens the safety and normal operation of the transmission line. Therefore, it becomes the first concern to prevent the frost jacking failure for design and construction of the Qinghai-Tibetan transmission line. To protect the transmission system from damage, it is necessary to evaluate the engineering risk and to employ some effective countermeasures to mitigate the frost-related damages. To evaluate the risk and provide reasonable suggestions for design and construction, a safety coefficient calculation which involves with the frost penetration, frost heave force, freezing strength as well as loads is conducted. The results show that the spread-type footing has more excellent performance to resist uplift loads than drilled shaft. To improve the safety of foundations, anti- heave measures including non-frost susceptive soil backfill, bevel foundation design, surface treatment and two-phase closed thermosyphon, etc were proposed and applied in the construction of the Qinghai-Tibetan grid project. The advantages and applicability of anti-heave technical solutions are described.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2012-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1061/9780784412473.057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
The Qinghai-Tibetan ±400 kV direct current grid interconnection project runs across 1038 km of permafrost and seasonally frozen-ground in the interior of the Qinghai-Tibetan Plateau. The mean annual air temperature of the Qinghai-Tibetan Plateau varies between -3 ℃ and -7 and the minimum air temperature ℃ is lower than -37 in short durations. The active ℃ layer is subjected to annual freeze-thaw cycle and its thickness varies between 2 m and 3 m. significant heave force is expected due to the existence of extensive frost susceptible soils and cold weather. The tower foundations tend to be jacked out of the ground and result in expensive maintenance costs and foundation failure, which significantly threatens the safety and normal operation of the transmission line. Therefore, it becomes the first concern to prevent the frost jacking failure for design and construction of the Qinghai-Tibetan transmission line. To protect the transmission system from damage, it is necessary to evaluate the engineering risk and to employ some effective countermeasures to mitigate the frost-related damages. To evaluate the risk and provide reasonable suggestions for design and construction, a safety coefficient calculation which involves with the frost penetration, frost heave force, freezing strength as well as loads is conducted. The results show that the spread-type footing has more excellent performance to resist uplift loads than drilled shaft. To improve the safety of foundations, anti- heave measures including non-frost susceptive soil backfill, bevel foundation design, surface treatment and two-phase closed thermosyphon, etc were proposed and applied in the construction of the Qinghai-Tibetan grid project. The advantages and applicability of anti-heave technical solutions are described.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.