{"title":"Controllable Micro/nano-fluidic Channel Bonding Process Based on the Expansion Centerline and “Filling-Barrier” Structure","authors":"Jian Jin, Si Di, Y. Hua, J. Qi","doi":"10.1109/3M-NANO.2018.8552202","DOIUrl":null,"url":null,"abstract":"Fabrication of micro/nano-fluidic channel is the key to micro/nano-fluidic system. Because of its simple equipment, low cost and good bonding strength, bonding technology becomes a suitable technology for sealing micro/nano-fluidic channel. However, during bonding process, the molten polymer will flow into the groove structure inevitably. When the size of the fluid channel decrease, especially when the size reaches the nanometer level, the flowing polymer can easily lead to the channel blockage. It has a negative influence on the precise control of the dimension of the fluid channel. In this paper, the hypothesis of the expansion centerline is put forward by the finite element simulation. According to the hypothesis, a ‘filling-barrier’ structure is designed to reduce the displacement produced by the pressure in the bonding process. Because the amount of filling is diverted, the top filling phenomenon is inhibited and the possibility of blockage is reduced during the bonding process. This paper also gives some design principles of the \"filling-barrier\" structure, by which we can control the influence of bonding pressure effectively.","PeriodicalId":6583,"journal":{"name":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"108 1","pages":"23-27"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2018.8552202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fabrication of micro/nano-fluidic channel is the key to micro/nano-fluidic system. Because of its simple equipment, low cost and good bonding strength, bonding technology becomes a suitable technology for sealing micro/nano-fluidic channel. However, during bonding process, the molten polymer will flow into the groove structure inevitably. When the size of the fluid channel decrease, especially when the size reaches the nanometer level, the flowing polymer can easily lead to the channel blockage. It has a negative influence on the precise control of the dimension of the fluid channel. In this paper, the hypothesis of the expansion centerline is put forward by the finite element simulation. According to the hypothesis, a ‘filling-barrier’ structure is designed to reduce the displacement produced by the pressure in the bonding process. Because the amount of filling is diverted, the top filling phenomenon is inhibited and the possibility of blockage is reduced during the bonding process. This paper also gives some design principles of the "filling-barrier" structure, by which we can control the influence of bonding pressure effectively.