Interaction of Organogermanium Compounds with Saccharides in Aqueous Solutions: Promotion of Aldose-to-ketose Isomerization and Its Molecular Mechanism.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of applied glycoscience Pub Date : 2023-12-20 eCollection Date: 2023-01-01 DOI:10.5458/jag.jag.JAG-2023_0004
Takae Nagasawa, Katsuyuki Sato, Takafumi Kasumi
{"title":"Interaction of Organogermanium Compounds with Saccharides in Aqueous Solutions: Promotion of Aldose-to-ketose Isomerization and Its Molecular Mechanism.","authors":"Takae Nagasawa, Katsuyuki Sato, Takafumi Kasumi","doi":"10.5458/jag.jag.JAG-2023_0004","DOIUrl":null,"url":null,"abstract":"<p><p>This review discusses sugar isomerization with organogermanium compounds. Organogermanium compounds markedly increase the aldose-ketose (glucose-fructose or lactose-lactulose) isomerization ratio, double the initial reaction rate, and significantly reduce the base-catalyzed degradation of sugars. <sup>1</sup>H-nuclear magnetic resonance analysis reveals that the affinity of organogermanium compounds with a 3-(trihydroxygermyl)propanoic acid (THGP) structure toward ketoses is 20-40 times stronger than that toward aldoses; thus, such organogermanium compounds form complexes more readily with ketoses than with aldoses. Stable ketose complexes, which contain multiple <i>cis</i>-diol structures and high fractions of furanose structures, suppress the reverse ketose-aldose reaction, thereby shifting the equilibrium toward the ketose side. These complexes also protect sugar molecules from alkaline degradation owing to the repulsion between anionic charges. The increased rate of the initial reaction in the alkaline isomerization process results from stabilizing the transition state by forming a complex between THGP and a <i>cis</i>-enediol intermediate. The cyclic pentacoordinate or hexacoordinate THGP structures give rise to a conjugated system of germanium orbitals, which is extended through dπ-pπ interactions, thereby improving the stability of the complex. Based on these results, we have developed a bench-scale lactulose syrup manufacturing plant incorporating a system to separate, recover, and reuse organogermanium poly-<i>trans</i>-[(2-carboxyethyl)germasesquioxane]. This manufacturing plant can be used as a model of an alkaline isomerization accelerator for continuous industrial production.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2023_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review discusses sugar isomerization with organogermanium compounds. Organogermanium compounds markedly increase the aldose-ketose (glucose-fructose or lactose-lactulose) isomerization ratio, double the initial reaction rate, and significantly reduce the base-catalyzed degradation of sugars. 1H-nuclear magnetic resonance analysis reveals that the affinity of organogermanium compounds with a 3-(trihydroxygermyl)propanoic acid (THGP) structure toward ketoses is 20-40 times stronger than that toward aldoses; thus, such organogermanium compounds form complexes more readily with ketoses than with aldoses. Stable ketose complexes, which contain multiple cis-diol structures and high fractions of furanose structures, suppress the reverse ketose-aldose reaction, thereby shifting the equilibrium toward the ketose side. These complexes also protect sugar molecules from alkaline degradation owing to the repulsion between anionic charges. The increased rate of the initial reaction in the alkaline isomerization process results from stabilizing the transition state by forming a complex between THGP and a cis-enediol intermediate. The cyclic pentacoordinate or hexacoordinate THGP structures give rise to a conjugated system of germanium orbitals, which is extended through dπ-pπ interactions, thereby improving the stability of the complex. Based on these results, we have developed a bench-scale lactulose syrup manufacturing plant incorporating a system to separate, recover, and reuse organogermanium poly-trans-[(2-carboxyethyl)germasesquioxane]. This manufacturing plant can be used as a model of an alkaline isomerization accelerator for continuous industrial production.

有机锗化合物与水溶液中糖类的相互作用:促进醛糖-酮糖异构化及其分子机理。
本综述讨论了有机锗化合物的糖异构化作用。有机锗化合物能显著提高醛糖-酮糖(葡萄糖-果糖或乳糖-乳糖)异构化比率,使初始反应速率加倍,并显著降低糖类在碱催化下的降解。1H 核磁共振分析表明,具有 3-(三羟基锗基)丙酸(THGP)结构的有机锗化合物与酮糖的亲和力比与醛糖的亲和力强 20-40 倍;因此,这类有机锗化合物更容易与酮糖形成复合物,而不是与醛糖。稳定的酮糖络合物含有多个顺式二醇结构和高比例的呋喃糖结构,可抑制酮糖-醛糖反向反应,从而使平衡转向酮糖一侧。由于阴离子电荷之间的排斥作用,这些复合物还能保护糖分子不被碱性降解。碱性异构化过程中初始反应速度的提高是由于 THGP 与顺式-烯二醇中间体形成复合物,从而稳定了过渡态。环状五配位或六配位 THGP 结构产生了一个锗轨道共轭体系,该体系通过 dπ-pπ 相互作用得到扩展,从而提高了配合物的稳定性。基于这些结果,我们开发出了一种台式规模的乳糖糖浆生产设备,其中包含一个可分离、回收和再利用有机锗聚-反式-[(2-羧基乙基)胚芽酶二氧杂环]的系统。该生产设备可用作连续工业生产的碱性异构化加速器模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信