Audrey Masson, Guillaume Cazenave, Julien Trombini, M. Batt
{"title":"The current challenges of automatic recognition of facial expressions: A systematic review","authors":"Audrey Masson, Guillaume Cazenave, Julien Trombini, M. Batt","doi":"10.3233/aic-200631","DOIUrl":null,"url":null,"abstract":"In recent years, due to its great economic and social potential, the recognition of facial expressions linked to emotions has become one of the most flourishing applications in the field of artificial intelligence, and has been the subject of many developments. However, despite significant progress, this field is still subject to many theoretical debates and technical challenges. It therefore seems important to make a general inventory of the different lines of research and to present a synthesis of recent results in this field. To this end, we have carried out a systematic review of the literature according to the guidelines of the PRISMA method. A search of 13 documentary databases identified a total of 220 references over the period 2014–2019. After a global presentation of the current systems and their performance, we grouped and analyzed the selected articles in the light of the main problems encountered in the field of automated facial expression recognition. The conclusion of this review highlights the strengths, limitations and main directions for future research in this field.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"6 1","pages":"113-138"},"PeriodicalIF":1.4000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-200631","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
In recent years, due to its great economic and social potential, the recognition of facial expressions linked to emotions has become one of the most flourishing applications in the field of artificial intelligence, and has been the subject of many developments. However, despite significant progress, this field is still subject to many theoretical debates and technical challenges. It therefore seems important to make a general inventory of the different lines of research and to present a synthesis of recent results in this field. To this end, we have carried out a systematic review of the literature according to the guidelines of the PRISMA method. A search of 13 documentary databases identified a total of 220 references over the period 2014–2019. After a global presentation of the current systems and their performance, we grouped and analyzed the selected articles in the light of the main problems encountered in the field of automated facial expression recognition. The conclusion of this review highlights the strengths, limitations and main directions for future research in this field.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.