Buckling of a critically tapered rod: properties of some global branches of solutions

C. Stuart, G. Vuillaume
{"title":"Buckling of a critically tapered rod: properties of some global branches of solutions","authors":"C. Stuart, G. Vuillaume","doi":"10.1098/rspa.2004.1355","DOIUrl":null,"url":null,"abstract":"This paper, which is a continuation of C. A. Stuart & G. Vuillaume (2003 Proc. R. Soc. Lond. A459, 1863–1889), is concerned with the study of the buckling of a tapered rod. This physical phenomenon leads to the nonlinear eigenvalue problem: {A(s)u'(s)}'+μsinu(s)=0s∈(0,1), u(1)= lim s→0 A(s)u'(s)=0 ∫ 0 1 A(s)u' (s) 2 ds <∞, where A(s) ε C([0,1]) is such that A(s) > 0 for all s > 0 and lims→0A(s)/sp = L for some constants p ⩾ 0 and L ε (0,∞). We deal with the critical case p= 2 and study the set of all the solutions of the problem. In Stuart & Vuillaume (2003) and under additional assumptions on A, we found a set of points {μi , i ε I ⫅ N* ={1,2,3,...}} ⊂ R+ such that a global branch of non–trivial solutions emanates from each μi , iε I. In this paper, we provide more detailed information about these global branches of solutions.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"13 1","pages":"3261 - 3282"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper, which is a continuation of C. A. Stuart & G. Vuillaume (2003 Proc. R. Soc. Lond. A459, 1863–1889), is concerned with the study of the buckling of a tapered rod. This physical phenomenon leads to the nonlinear eigenvalue problem: {A(s)u'(s)}'+μsinu(s)=0s∈(0,1), u(1)= lim s→0 A(s)u'(s)=0 ∫ 0 1 A(s)u' (s) 2 ds <∞, where A(s) ε C([0,1]) is such that A(s) > 0 for all s > 0 and lims→0A(s)/sp = L for some constants p ⩾ 0 and L ε (0,∞). We deal with the critical case p= 2 and study the set of all the solutions of the problem. In Stuart & Vuillaume (2003) and under additional assumptions on A, we found a set of points {μi , i ε I ⫅ N* ={1,2,3,...}} ⊂ R+ such that a global branch of non–trivial solutions emanates from each μi , iε I. In this paper, we provide more detailed information about these global branches of solutions.
临界锥杆的屈曲:解的一些整体分支的性质
本文是C. a . Stuart & G. Vuillaume (2003 Proc. R. Soc)的延续。Lond。A459, 1863-1889),是关于锥形棒的屈曲的研究。这种物理现象导致非线性特征值问题:{A(s)u'(s)}'+μsinu(s)=0s∈(0,1),u(1)= lims→0A(s) u'(s)=0∫1 A(s)u'(s) 2 ds 0对于所有s > 0和lims→0A(s)/sp = L对于某些常数p大于或等于0和L ε(0,∞)。我们处理了临界情况p= 2,并研究了问题所有解的集合。在Stuart & Vuillaume(2003)中,在A的附加假设下,我们发现了点{μi, i ε i⫅N* ={1,2,3,…}}∧R+使得非平凡解的全局分支从每个μi, ε i中发散出来,在本文中,我们提供了关于这些解的全局分支的更详细的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信