Probability distributions of COVID-19 tweet posted trends use a nonhomogeneous Poisson process

D. Munandar, S. Supian, S. Subiyanto
{"title":"Probability distributions of COVID-19 tweet posted trends use a nonhomogeneous Poisson process","authors":"D. Munandar, S. Supian, S. Subiyanto","doi":"10.46336/ijqrm.v1i4.94","DOIUrl":null,"url":null,"abstract":"The influence of social media in disseminating information, especially during the COVID-19 pandemic, can be observed with time interval, so that the probability of number of tweets discussed by netizens on social media can be observed. The nonhomogeneous Poisson process (NHPP) is a Poisson process dependent on time parameters and the exponential distribution having unequal parameter values and, independently of each other. The probability of no occurrence an event in the initial state is one and the probability of an event in initial state is zero. Using of non-homogeneous Poisson in this paper aims to predict and count the number of tweet posts with the keyword coronavirus, COVID-19 with set time intervals every day. Posting of tweets from one time each day to the next do not affect each other and the number of tweets is not the same. The dataset used in this study is crawling of COVID-19 tweets three times a day with duration of 20 minutes each crawled for 13 days or 39 time intervals. The result of this study obtained predictions and calculated for the probability of the number of tweets for the tendency of netizens to post on the situation of the COVID-19 pandemic.","PeriodicalId":14309,"journal":{"name":"International Journal of Quantitative Research and Modeling","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantitative Research and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46336/ijqrm.v1i4.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The influence of social media in disseminating information, especially during the COVID-19 pandemic, can be observed with time interval, so that the probability of number of tweets discussed by netizens on social media can be observed. The nonhomogeneous Poisson process (NHPP) is a Poisson process dependent on time parameters and the exponential distribution having unequal parameter values and, independently of each other. The probability of no occurrence an event in the initial state is one and the probability of an event in initial state is zero. Using of non-homogeneous Poisson in this paper aims to predict and count the number of tweet posts with the keyword coronavirus, COVID-19 with set time intervals every day. Posting of tweets from one time each day to the next do not affect each other and the number of tweets is not the same. The dataset used in this study is crawling of COVID-19 tweets three times a day with duration of 20 minutes each crawled for 13 days or 39 time intervals. The result of this study obtained predictions and calculated for the probability of the number of tweets for the tendency of netizens to post on the situation of the COVID-19 pandemic.
COVID-19推文趋势的概率分布使用非均匀泊松过程
可以用时间间隔观察社交媒体对信息传播的影响,特别是在COVID-19大流行期间,从而可以观察到网民在社交媒体上讨论推文数量的概率。非齐次泊松过程(NHPP)是一个依赖于时间参数和指数分布的泊松过程,它们具有不等的参数值,彼此独立。初始状态下不发生事件的概率为1,初始状态下发生事件的概率为0。本文利用非齐次泊松方法,以设定的时间间隔预测和统计每天以冠状病毒COVID-19为关键字的tweet帖子的数量。每天从一个时间发布推文到下一个时间发布推文不会相互影响,推文的数量也不相同。本研究中使用的数据集是每天抓取三次COVID-19推文,每次持续20分钟,每次抓取13天或39个时间间隔。本研究的结果得到了预测,并计算了网民对COVID-19大流行情况的帖子倾向的推文数量的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信