Quality analysis and integration of large-scale molecular data sets

Lars J. Jensen, Peer Bork
{"title":"Quality analysis and integration of large-scale molecular data sets","authors":"Lars J. Jensen,&nbsp;Peer Bork","doi":"10.1016/S1741-8372(04)02408-9","DOIUrl":null,"url":null,"abstract":"<div><p>One of the major challenges in bioinformatics today is to integrate and interpret the heterogeneous biological data that are being produced at an ever increasing pace. As this type of analysis is still in its infancy, all studies so far have relied on applying simple rule-based criteria on only a small subset of the available data. To enable comprehensive studies to be undertaken with a statistical framework, standardized repositories from which all datasets can be easily obtained and benchmarks that quantify the often high error rates of large-scale datasets are needed. Quality control, benchmark and integration efforts from protein interaction networks in the context of genome and transcriptome data are reviewed.</p></div>","PeriodicalId":100382,"journal":{"name":"Drug Discovery Today: TARGETS","volume":"3 2","pages":"Pages 51-56"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1741-8372(04)02408-9","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: TARGETS","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1741837204024089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the major challenges in bioinformatics today is to integrate and interpret the heterogeneous biological data that are being produced at an ever increasing pace. As this type of analysis is still in its infancy, all studies so far have relied on applying simple rule-based criteria on only a small subset of the available data. To enable comprehensive studies to be undertaken with a statistical framework, standardized repositories from which all datasets can be easily obtained and benchmarks that quantify the often high error rates of large-scale datasets are needed. Quality control, benchmark and integration efforts from protein interaction networks in the context of genome and transcriptome data are reviewed.

大规模分子数据集的质量分析和集成
当今生物信息学的主要挑战之一是整合和解释异质生物数据,这些数据正在以越来越快的速度产生。由于这种类型的分析仍处于起步阶段,迄今为止所有的研究都依赖于对现有数据的一小部分应用简单的基于规则的标准。为了能够在统计框架下进行全面的研究,需要标准化的存储库,从中可以很容易地获得所有数据集,并需要量化大型数据集往往很高的错误率的基准。本文综述了基因组和转录组数据背景下蛋白质相互作用网络的质量控制、基准和整合工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信