Congruences for Consecutive Coefficients of Gaussian Polynomials with Crank Statistics

IF 0.7 4区 数学 Q2 MATHEMATICS
Dennis Eichhorn, Lydia Engle, Brandt Kronholm
{"title":"Congruences for Consecutive Coefficients of Gaussian Polynomials with Crank Statistics","authors":"Dennis Eichhorn, Lydia Engle, Brandt Kronholm","doi":"10.37236/10493","DOIUrl":null,"url":null,"abstract":"\n \n \nIn this paper, we establish infinite families of congruences in consecutive arithmetic progressions modulo any odd prime $\\ell$ for the function $p\\big(n,m,N\\big)$, which enumerates the partitions of $n$ into at most $m$ parts with no part larger than $N$. We also treat the function $p\\big(n,m,(a,b]\\big)$, which bounds the largest part above and below, and obtain similar infinite families of congruences. \nFor $m \\leq 4$ and $\\ell = 3$, simple combinatorial statistics called \"cranks\" witness these congruences. We prove this analytically for $m=4$, and then both analytically and combinatorially for $m = 3$. Our combinatorial proof relies upon explicit dissections of convex lattice polygons. \n  \nFor $m \\leq 4$ and $\\ell = 3$, simple combinatorial statistics called ``cranks\"  witness these congruences.  We prove this analytically for $m=4$, and then both analytically and combinatorially for $m = 3$.  Our combinatorial proof relies upon explicit dissections of convex lattice polygons.  \n \n \n","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10493","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish infinite families of congruences in consecutive arithmetic progressions modulo any odd prime $\ell$ for the function $p\big(n,m,N\big)$, which enumerates the partitions of $n$ into at most $m$ parts with no part larger than $N$. We also treat the function $p\big(n,m,(a,b]\big)$, which bounds the largest part above and below, and obtain similar infinite families of congruences. For $m \leq 4$ and $\ell = 3$, simple combinatorial statistics called "cranks" witness these congruences. We prove this analytically for $m=4$, and then both analytically and combinatorially for $m = 3$. Our combinatorial proof relies upon explicit dissections of convex lattice polygons.   For $m \leq 4$ and $\ell = 3$, simple combinatorial statistics called ``cranks"  witness these congruences.  We prove this analytically for $m=4$, and then both analytically and combinatorially for $m = 3$.  Our combinatorial proof relies upon explicit dissections of convex lattice polygons. 
用曲柄统计量研究高斯多项式连续系数的同余性
本文对函数$p\big(n,m,N\big)$建立了取任意奇素数$\ell$为模的连续等差数列的无穷同余族,它列举了$n$的划分为不大于$N$的最多$m$个部分。我们还处理了函数$p\big(n,m,(a,b]\big)$,它的上下界是最大的部分,并得到了类似的无穷同余族。对于$m \leq 4$和$\ell = 3$,被称为“曲柄”的简单组合统计证明了这些同余。我们对$m=4$进行了解析证明,然后对$m = 3$进行了解析和组合证明。我们的组合证明依赖于凸点阵多边形的显式解剖。对于$m \leq 4$和$\ell = 3$,被称为“曲柄”的简单组合统计证明了这些一致性。我们对$m=4$进行了解析证明,然后对$m = 3$进行了解析和组合证明。我们的组合证明依赖于凸点阵多边形的显式解剖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信