Box-Jenkins ARIMA Modelling: Forecasting FDI in India

Deepanshu Sharma, Kritika Phulli
{"title":"Box-Jenkins ARIMA Modelling: Forecasting FDI in India","authors":"Deepanshu Sharma, Kritika Phulli","doi":"10.14293/s2199-1006.1.sor-.ppzckjy.v1","DOIUrl":null,"url":null,"abstract":"In the rapidly advancing dynamics of the economy trends of countries, the forecasting econometric techniques hold significant importance in the field of advance economics and management. Thus, this study intends to create Box Jenkins time series ARIMA model for analysing and predicting the trend of net FDI (Foreign Direct Investment) in India. The model was generated on the dataset of FDI inflow of India from the year 1950 to 2020. The trend was analysed for the generation of the model that best fitted the forecasting. The study highlights the minimum AIC value and involves ADF test (Augmented Dickey-Fuller) to transform FDI data into stationary form for model generation. It proposes ARIMA (1,1,4) model for optimal forecasting of net FDI inflow in India with an accuracy of 96.5%. The model thus predicts the steady-state exponential growth of FDI inflow in the coming 2020-25.","PeriodicalId":21568,"journal":{"name":"ScienceOpen Posters","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ScienceOpen Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14293/s2199-1006.1.sor-.ppzckjy.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the rapidly advancing dynamics of the economy trends of countries, the forecasting econometric techniques hold significant importance in the field of advance economics and management. Thus, this study intends to create Box Jenkins time series ARIMA model for analysing and predicting the trend of net FDI (Foreign Direct Investment) in India. The model was generated on the dataset of FDI inflow of India from the year 1950 to 2020. The trend was analysed for the generation of the model that best fitted the forecasting. The study highlights the minimum AIC value and involves ADF test (Augmented Dickey-Fuller) to transform FDI data into stationary form for model generation. It proposes ARIMA (1,1,4) model for optimal forecasting of net FDI inflow in India with an accuracy of 96.5%. The model thus predicts the steady-state exponential growth of FDI inflow in the coming 2020-25.
Box-Jenkins ARIMA模型:预测印度FDI
在各国经济发展动态迅速变化的背景下,预测计量经济技术在先进经济学和管理学领域具有重要意义。因此,本研究拟建立Box Jenkins时间序列ARIMA模型,用于分析和预测印度的净FDI(外国直接投资)趋势。该模型是根据1950年至2020年印度外国直接投资流入数据集生成的。对趋势进行了分析,以生成最适合预测的模型。本研究突出AIC最小值,采用ADF检验(Augmented Dickey-Fuller)将FDI数据转换为平稳形式进行模型生成。提出了ARIMA(1,1,4)模型对印度FDI净流入的最优预测,准确率为96.5%。因此,该模型预测了未来2020- 2025年外国直接投资流入的稳态指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信