H Xu, X Chu, K J Gou, D X Jiang, Q Q Li, C G Lv, Z P Gao, G X Chen
{"title":"The photosynthetic function analysis for leaf photooxidation in rice.","authors":"H Xu, X Chu, K J Gou, D X Jiang, Q Q Li, C G Lv, Z P Gao, G X Chen","doi":"10.32615/ps.2023.004","DOIUrl":null,"url":null,"abstract":"<p><p>Photooxidative damage causes early leaf senescence and plant cell death. In this study, a light-sensitive rice cultivar, 812HS, and a non-light-sensitive cultivar, 812S, were used to investigate early leaf photooxidation. Leaf tips of 812HS exhibited yellowing under a light intensity of 720 μmol(photon) m<sup>-2</sup> s<sup>-1</sup>, accompanied by a decrease in chlorophyll and carotenoids, but 812S was unaffected. The photosynthetic performance of 812HS was also poorer than that of 812S. The H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub> <sup>·-</sup>, and malondialdehyde content increased sharply in 812HS, and associated antioxidant enzymes were inhibited. The degradation of core proteins in both PSI and PSII, as well as other photosynthesis-related proteins, was accelerated in 812HS. When shaded [180 μmol(photon) m<sup>-2</sup> s<sup>-1</sup>], 812HS recovered to normal. Therefore, our findings suggested excess light disturbed the balance of ROS metabolism, leading to the destruction of the antioxidant system and photosynthetic organs, and thus triggering the senescence of rice leaves.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"20 1","pages":"48-57"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2023.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photooxidative damage causes early leaf senescence and plant cell death. In this study, a light-sensitive rice cultivar, 812HS, and a non-light-sensitive cultivar, 812S, were used to investigate early leaf photooxidation. Leaf tips of 812HS exhibited yellowing under a light intensity of 720 μmol(photon) m-2 s-1, accompanied by a decrease in chlorophyll and carotenoids, but 812S was unaffected. The photosynthetic performance of 812HS was also poorer than that of 812S. The H2O2, O2·-, and malondialdehyde content increased sharply in 812HS, and associated antioxidant enzymes were inhibited. The degradation of core proteins in both PSI and PSII, as well as other photosynthesis-related proteins, was accelerated in 812HS. When shaded [180 μmol(photon) m-2 s-1], 812HS recovered to normal. Therefore, our findings suggested excess light disturbed the balance of ROS metabolism, leading to the destruction of the antioxidant system and photosynthetic organs, and thus triggering the senescence of rice leaves.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.