On-chip topological nanophotonic devices

Chip Pub Date : 2022-12-01 DOI:10.1016/j.chip.2022.100025
Cui-Cui Lu , Hong-Yi Yuan , Hong-Yu Zhang , Wen Zhao , Nian-En Zhang , Yan-Ji Zheng , Sayed Elshahat , Yong-Chun Liu
{"title":"On-chip topological nanophotonic devices","authors":"Cui-Cui Lu ,&nbsp;Hong-Yi Yuan ,&nbsp;Hong-Yu Zhang ,&nbsp;Wen Zhao ,&nbsp;Nian-En Zhang ,&nbsp;Yan-Ji Zheng ,&nbsp;Sayed Elshahat ,&nbsp;Yong-Chun Liu","doi":"10.1016/j.chip.2022.100025","DOIUrl":null,"url":null,"abstract":"<div><p>On-chip topological nanophotonic devices, which take photons as information carriers with topological protection during light propagation, have great application potential in the next generation photonic chips. The topological photonic states enable the nanophotonic devices to be robust and stable, immune to scattering even with imperfect structures. The development, opportunities and challenges of the on-chip topological nanophotonic devices have attracted great attention of scholars, and desired to be known. In this review, topological devices were introduced in the order of functionalities on an integrated photonic chip, i.e. topological light source, topological light waveguiding, topological light division and selection, topological light manipulation and topological light detecting. Finally, we gave outlooks for predicting and promoting the performances of on-chip topological nanophotonic devices from the angles of non-Hermitian systems, non-Abelian topology, metasurfaces, intelligent algorithms and multiple functional topological nanophotonic integration. This review provides rich knowledge about on-chip topological nanophotonic devices. The insights in this paper will spark inspiration and inspire new thinking for the realization of topological photonic chips.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 4","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000235/pdfft?md5=bd8e4c6e3d8131f0473af4b6667ea9c8&pid=1-s2.0-S2709472322000235-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

On-chip topological nanophotonic devices, which take photons as information carriers with topological protection during light propagation, have great application potential in the next generation photonic chips. The topological photonic states enable the nanophotonic devices to be robust and stable, immune to scattering even with imperfect structures. The development, opportunities and challenges of the on-chip topological nanophotonic devices have attracted great attention of scholars, and desired to be known. In this review, topological devices were introduced in the order of functionalities on an integrated photonic chip, i.e. topological light source, topological light waveguiding, topological light division and selection, topological light manipulation and topological light detecting. Finally, we gave outlooks for predicting and promoting the performances of on-chip topological nanophotonic devices from the angles of non-Hermitian systems, non-Abelian topology, metasurfaces, intelligent algorithms and multiple functional topological nanophotonic integration. This review provides rich knowledge about on-chip topological nanophotonic devices. The insights in this paper will spark inspiration and inspire new thinking for the realization of topological photonic chips.

片上拓扑纳米光子器件
片上拓扑纳米光子器件以光子为信息载体,在光传播过程中受到拓扑保护,在下一代光子芯片中具有很大的应用潜力。拓扑光子态使纳米光子器件具有鲁棒性和稳定性,即使在不完美的结构下也不受散射的影响。片上拓扑纳米光子器件的发展、机遇和挑战引起了学者们的高度关注和关注。本文根据集成光子芯片的功能,依次介绍了拓扑器件,即拓扑光源、拓扑光波导、拓扑分光与选择、拓扑光操纵和拓扑光检测。最后,从非厄米系统、非阿贝尔拓扑、超表面、智能算法和多功能拓扑纳米光子集成等方面对片上拓扑纳米光子器件的性能预测和提升进行了展望。本综述提供了丰富的片上拓扑纳米光子器件的知识。本文的见解将为拓扑光子芯片的实现带来启发和新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信