{"title":"A history of observables and Hamilton–Jacobi approaches to general relativity","authors":"Donald Salisbury","doi":"10.1140/epjh/s13129-022-00039-8","DOIUrl":null,"url":null,"abstract":"<div><p>The main focus is on the Hamilton–Jacobi techniques in classical general relativity that were pursued by Peter Bergmann and Arthur Komar in the 1960s and 1970s. They placed special emphasis on the ability to construct the factor group of canonical transformations, where the four-dimensional diffeomorphism phase space transformations were factored out. Equivalence classes were identified by a set of phase space functions that were invariant under the action of the four-dimensional diffeomorphism group. This is contrasted and compared with approaches of Paul Weiss, Julian Schwinger, Richard Arnowitt, Stanley Deser, Charles Misner, Karel Kuchař—and especially the geometrodynamical program of John Wheeler and Bryce DeWitt where diffeomorphism symmetry is replaced by a notion of multifingered time. The origins of all of these approaches are traced to Elie Cartan’s invariant integral formulation of classical dynamics. A related correspondence concerning the thin sandwich dispute is also documented.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-022-00039-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The main focus is on the Hamilton–Jacobi techniques in classical general relativity that were pursued by Peter Bergmann and Arthur Komar in the 1960s and 1970s. They placed special emphasis on the ability to construct the factor group of canonical transformations, where the four-dimensional diffeomorphism phase space transformations were factored out. Equivalence classes were identified by a set of phase space functions that were invariant under the action of the four-dimensional diffeomorphism group. This is contrasted and compared with approaches of Paul Weiss, Julian Schwinger, Richard Arnowitt, Stanley Deser, Charles Misner, Karel Kuchař—and especially the geometrodynamical program of John Wheeler and Bryce DeWitt where diffeomorphism symmetry is replaced by a notion of multifingered time. The origins of all of these approaches are traced to Elie Cartan’s invariant integral formulation of classical dynamics. A related correspondence concerning the thin sandwich dispute is also documented.
主要焦点是经典广义相对论中的汉密尔顿-雅可比技术,这是彼得·伯格曼和阿瑟·科马尔在20世纪60年代和70年代所追求的。他们特别强调了构造正则变换的因子群的能力,其中四维微分同胚相空间变换被分解了。用一组在四维微分同构群作用下不变的相空间函数来识别等价类。这与Paul Weiss, Julian Schwinger, Richard Arnowitt, Stanley Deser, Charles Misner, Karel Kuchař-and的方法进行了对比和比较,特别是John Wheeler和Bryce DeWitt的几何动力学方案,其中微分对称被多指时间的概念所取代。所有这些方法的起源都可以追溯到Elie Cartan的经典动力学不变积分公式。关于薄三明治争议的相关信函也被记录下来。
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.