{"title":"Optimizing data locality by executor allocation in spark computing environment","authors":"Zhongming Fu, Mengsi He, Zhuo Tang, Yang Zhang","doi":"10.2298/csis220131065f","DOIUrl":null,"url":null,"abstract":"Data locality is an important concept in big data processing. Most of the existing research optimized data locality from the aspect of task scheduling. However, as the execution container of tasks, the executors started on which nodes can directly affect the locality level achieved by the tasks. This paper tries to improve the data locality by executor allocation for reduce stage in Spark computing environment. Firstly, we calculate the network distance matrix of executors and formulate an optimal executor allocation problem to minimize the total communication distance. Then, when the network distance between executors satisfies the triangular inequality, an approximate algorithm is proposed; and when the network distance between executors does not satisfy the triangular inequality, a greedy algorithm is proposed. Finally, we evaluate the performance of our algorithms in a practical Spark cluster by using several representative micro-benchmarks (Sort and Join) and macro-benchmarks (PageRank and LDA). Experimental results show that the proposed algorithms can decrease the execution time of tasks for lower data communication.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"3 1","pages":"491-512"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis220131065f","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data locality is an important concept in big data processing. Most of the existing research optimized data locality from the aspect of task scheduling. However, as the execution container of tasks, the executors started on which nodes can directly affect the locality level achieved by the tasks. This paper tries to improve the data locality by executor allocation for reduce stage in Spark computing environment. Firstly, we calculate the network distance matrix of executors and formulate an optimal executor allocation problem to minimize the total communication distance. Then, when the network distance between executors satisfies the triangular inequality, an approximate algorithm is proposed; and when the network distance between executors does not satisfy the triangular inequality, a greedy algorithm is proposed. Finally, we evaluate the performance of our algorithms in a practical Spark cluster by using several representative micro-benchmarks (Sort and Join) and macro-benchmarks (PageRank and LDA). Experimental results show that the proposed algorithms can decrease the execution time of tasks for lower data communication.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.