Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs

A. Venkatraman, A. Schaft
{"title":"Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs","authors":"A. Venkatraman, A. Schaft","doi":"10.3166/ejc.16.665-677","DOIUrl":null,"url":null,"abstract":"We consider port-Hamiltonian systems with dissipation (PHSD) whose underlying geometric structure is represented as the composition of a Dirac and a resistive structure. We show how the choice of a new passive input-output pair for a PHSD is reflected in a new Dirac structure. We define a general class of new passive inputoutput pairs for a PHSD and subsequently compute (in a constructive manner) the resulting new Dirac structure and examine the achievable Casimirs for this new Dirac structure. We focus on the special case where only the passive output is changed (while retaining the original input) and subsequently define a general class of new passive outputs for the PHSD. We then identify (on the basis of the achievable Casimirs) the precise form of the so-called dissipation obstacle, and how this obstacle may be removed by changing the passive output.We also review the “swapping the damping” procedure for computing a new passive output, and show how this can be obtained as a special case within our approach. We finally consider the examples of the RLC-circuit and MEMS optical switch to investigate the role played by the new class of passive outputs in shaping the system's energy.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":"9 1","pages":"665-677"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/ejc.16.665-677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We consider port-Hamiltonian systems with dissipation (PHSD) whose underlying geometric structure is represented as the composition of a Dirac and a resistive structure. We show how the choice of a new passive input-output pair for a PHSD is reflected in a new Dirac structure. We define a general class of new passive inputoutput pairs for a PHSD and subsequently compute (in a constructive manner) the resulting new Dirac structure and examine the achievable Casimirs for this new Dirac structure. We focus on the special case where only the passive output is changed (while retaining the original input) and subsequently define a general class of new passive outputs for the PHSD. We then identify (on the basis of the achievable Casimirs) the precise form of the so-called dissipation obstacle, and how this obstacle may be removed by changing the passive output.We also review the “swapping the damping” procedure for computing a new passive output, and show how this can be obtained as a special case within our approach. We finally consider the examples of the RLC-circuit and MEMS optical switch to investigate the role played by the new class of passive outputs in shaping the system's energy.
基于交替无源输入输出对的端口-哈密顿系统能量整形
我们考虑具有耗散的端口-哈密顿系统,其底层几何结构表示为狄拉克结构和电阻结构的组合。我们展示了PHSD的新被动输入输出对的选择如何反映在新的狄拉克结构中。我们为PHSD定义了一类新的无源输入输出对,随后(以建设性的方式)计算了由此产生的新狄拉克结构,并检查了该新狄拉克结构的可实现卡西米尔。我们专注于只有被动输出被改变的特殊情况(同时保留原始输入),并随后为PHSD定义了一类新的被动输出。然后,我们确定(在可实现的卡西米尔的基础上)所谓的耗散障碍的精确形式,以及如何通过改变被动输出来消除这种障碍。我们还回顾了计算新的无源输出的“交换阻尼”过程,并展示了如何在我们的方法中作为特殊情况获得这一过程。最后,我们考虑了rlc电路和MEMS光开关的例子,以研究新型无源输出在形成系统能量方面所起的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信