{"title":"Adaptive NN Cooperative Control of Unknown Nonlinear Multiagent Systems With Communication Delays","authors":"H. E. Psillakis","doi":"10.1109/TSMC.2019.2950114","DOIUrl":null,"url":null,"abstract":"In this article, we address the distributed adaptive neural network (NN) control problem for approximate state consensus under communication delays. High-order agent models are considered with unknown nonlinearities and unknown, nonidentical control directions. A novel set of variables called proportional and delayed integral (PdI) consensus error variables are introduced that allow us to recast the approximate consensus problem as an approximate regulation problem. Each PdI variable associated with a certain agent uses only delayed measurements of its neighbors’ states in accordance to our delayed communication protocol. Radial basis function (RBF) NNs are employed to approximate the unknown nonlinearities and distributed adaptive NN control laws with Nussbaum gains are proposed that ensure approximate consensus by steering all PdI variables to a neighborhood of zero. Simulation results are also presented that verify the validity of our theoretical analysis.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"10 1","pages":"5311-5321"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2950114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this article, we address the distributed adaptive neural network (NN) control problem for approximate state consensus under communication delays. High-order agent models are considered with unknown nonlinearities and unknown, nonidentical control directions. A novel set of variables called proportional and delayed integral (PdI) consensus error variables are introduced that allow us to recast the approximate consensus problem as an approximate regulation problem. Each PdI variable associated with a certain agent uses only delayed measurements of its neighbors’ states in accordance to our delayed communication protocol. Radial basis function (RBF) NNs are employed to approximate the unknown nonlinearities and distributed adaptive NN control laws with Nussbaum gains are proposed that ensure approximate consensus by steering all PdI variables to a neighborhood of zero. Simulation results are also presented that verify the validity of our theoretical analysis.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.