Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem

B. M. Brown, M. Langer, M. Marletta
{"title":"Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem","authors":"B. M. Brown, M. Langer, M. Marletta","doi":"10.1098/rspa.2003.1272","DOIUrl":null,"url":null,"abstract":"This paper studies the resonances and points of spectral concentration of the block operator matrix ( − d2 d x 2 +q tw tw ) in the space L2(0,1)⊕L2(0,1). In particular we study the dynamics of the resonance/eigenvalue λ(t), showing that an embedded eigenvalue can evolve into a resonance and that eigenvalues which are absorbed by the essential spectrum give rise to resonance points. A connection is also established between resonances and points of spectral concentration. Finally, some numerical examples are given which show that each of the above theoretical possibilities can be realized.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper studies the resonances and points of spectral concentration of the block operator matrix ( − d2 d x 2 +q tw tw ) in the space L2(0,1)⊕L2(0,1). In particular we study the dynamics of the resonance/eigenvalue λ(t), showing that an embedded eigenvalue can evolve into a resonance and that eigenvalues which are absorbed by the essential spectrum give rise to resonance points. A connection is also established between resonances and points of spectral concentration. Finally, some numerical examples are given which show that each of the above theoretical possibilities can be realized.
二阶块算子矩阵的谱浓度和共振及相关的λ有理Sturm-Liouville问题
本文研究了L2(0,1)⊕L2(0,1)空间中块算子矩阵(- d2 d x 2 +q tw tw)的谱集中共振点和谱集中点。特别地,我们研究了共振/特征值λ(t)的动力学,表明嵌入的特征值可以演变成共振,并且被本质谱吸收的特征值产生共振点。在共振和谱集中点之间也建立了联系。最后给出了一些数值算例,表明上述每种理论可能性都是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信