{"title":"A Re-appraisal of the Challenges Associated with Detecting Alien Signals and Technosigniatures","authors":"Gary Steven Robertshaw","doi":"10.59332/jbis-076-03-0087","DOIUrl":null,"url":null,"abstract":"The Rare Earth Hypothesis contends that Earth’s unusual formation and distinct evolutionary pathways led to the unlikely emergence of Homo sapiens. This contention is developed further by combining the universal principles of the Newtonian n-body problem and Darwinism to argue that there is also an inherent randomness in the sequence, timing, duration and nature of evolutionary outcomes on alien worlds. This has two important implications. Firstly, where alien life might emerge, evolutionary pathways must differ considerably to those on Earth. Within this, intelligence is not the goal of evolution nor is it necessarily the best adaptation for a given niche; there is no systematic, inexorable progression towards higher intelligence and technology. Secondly, the chances of an advanced alien civilisation emerging from a separate, random evolutionary pathway with matching technology, and proximate signalling in deep time are vanishingly small. This re appraisal of the challenges associated with detecting alien signals has the advantage of using two key universal principles without relying explicitly on anthropocentric assumptions. Keywords: Fermi Paradox, Rare Earth Hypothesis, Alien Signals, SETI, Exoplanets","PeriodicalId":54906,"journal":{"name":"Jbis-Journal of the British Interplanetary Society","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jbis-Journal of the British Interplanetary Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59332/jbis-076-03-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The Rare Earth Hypothesis contends that Earth’s unusual formation and distinct evolutionary pathways led to the unlikely emergence of Homo sapiens. This contention is developed further by combining the universal principles of the Newtonian n-body problem and Darwinism to argue that there is also an inherent randomness in the sequence, timing, duration and nature of evolutionary outcomes on alien worlds. This has two important implications. Firstly, where alien life might emerge, evolutionary pathways must differ considerably to those on Earth. Within this, intelligence is not the goal of evolution nor is it necessarily the best adaptation for a given niche; there is no systematic, inexorable progression towards higher intelligence and technology. Secondly, the chances of an advanced alien civilisation emerging from a separate, random evolutionary pathway with matching technology, and proximate signalling in deep time are vanishingly small. This re appraisal of the challenges associated with detecting alien signals has the advantage of using two key universal principles without relying explicitly on anthropocentric assumptions. Keywords: Fermi Paradox, Rare Earth Hypothesis, Alien Signals, SETI, Exoplanets
期刊介绍:
The Journal of the British Interplanetary Society (JBIS) is a technical scientific journal, first published in 1934. JBIS is concerned with space science and space technology. The journal is edited and published monthly in the United Kingdom by the British Interplanetary Society.
Although the journal maintains high standards of rigorous peer review, the same with other journals in astronautics, it stands out as a journal willing to allow measured speculation on topics deemed to be at the frontiers of our knowledge in science. The boldness of journal in this respect, marks it out as containing often speculative but visionary papers on the subject of astronautics.