{"title":"Shape Memory Properties of 4D Printed Parts Under Cyclic Loading: Effects of Infill Characteristics and Stimulus Conditions","authors":"Muyue Han, Jing Zhao, Lin Li, Miao Tan","doi":"10.1115/msec2022-85825","DOIUrl":null,"url":null,"abstract":"\n 4D printing has spurred growing interests since its recent emergence, as it enables the fabrication of dynamic structures with reconfigurability over time when exposed to external stimuli, which is not feasible using 3D printing. The current literature on 4D printing is mainly focused on developing new materials and investigating the time-evolving properties of the printed parts, whereas the influences of process parameters on stimuli-response behaviors of 4D printed parts are not adequately explored, especially under cyclic loadings. In this study, experimental analyses are conducted to investigate the effects of infill strategies and stimulus conditions on the shape memory properties of 4D printed thermo-responsive parts. Specifically, cyclic thermo-mechanical tests are performed under different operating temperatures to investigate the shape programmability and recovery characteristic of specimens printed with various infill patterns. The results indicate that specimens printed with the rectilinear pattern exhibit better shape programmability under cyclic thermo-mechanical loadings than polygonal patterns. In addition, the decrease in shape fixity ratios over multiple cycles is also observed for all considered infill patterns. The comparative studies suggest that the increase in operating temperature within the vicinity of the material’s glass transition temperature can improve the cyclic shape memory property.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
4D printing has spurred growing interests since its recent emergence, as it enables the fabrication of dynamic structures with reconfigurability over time when exposed to external stimuli, which is not feasible using 3D printing. The current literature on 4D printing is mainly focused on developing new materials and investigating the time-evolving properties of the printed parts, whereas the influences of process parameters on stimuli-response behaviors of 4D printed parts are not adequately explored, especially under cyclic loadings. In this study, experimental analyses are conducted to investigate the effects of infill strategies and stimulus conditions on the shape memory properties of 4D printed thermo-responsive parts. Specifically, cyclic thermo-mechanical tests are performed under different operating temperatures to investigate the shape programmability and recovery characteristic of specimens printed with various infill patterns. The results indicate that specimens printed with the rectilinear pattern exhibit better shape programmability under cyclic thermo-mechanical loadings than polygonal patterns. In addition, the decrease in shape fixity ratios over multiple cycles is also observed for all considered infill patterns. The comparative studies suggest that the increase in operating temperature within the vicinity of the material’s glass transition temperature can improve the cyclic shape memory property.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.