Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D

IF 0.9 Q4 GEOCHEMISTRY & GEOPHYSICS
A. D. K. Kenfack, Nicolas Matome Thantsha, M. Msimanga
{"title":"Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D","authors":"A. D. K. Kenfack, Nicolas Matome Thantsha, M. Msimanga","doi":"10.3390/solar3030025","DOIUrl":null,"url":null,"abstract":"This paper presents the simulation of the novel prototype of a heterojunction perovskite solar cell (PSC) based on CSGeI2Br/CSGeI3. The device consists of two absorber layers (CSGeI2Br, CSGeI3), an electron transport layer (ETL) chosen as TiO2 and a hole transport layer (HTL) given as poly(3-hexylthiophene) (P3HT). Within the simulation, the effects of thickness, doping and defect density in each absorber layer and different back contact metal electrodes on electrical parameters (efficiency, short circuit current, open circuit voltage, and fill factor) are evaluated. In addition, the contribution of the HTL (doping density and thickness), temperature, shunt and series resistance were also checked on the same electrical parameters. The simulations are conducted in standard test conditions with the irradiation normalized as 0.1 W/cm2 using the SCAPS-1D platform. The maximum efficiency obtained within the simulation of this device was about 31.86%. For this device, the thickness of the CSGeI3 layer should be around 900 nm, while that of the CsGeI2Br should be around 100 nm to facilitate optimal absorption of the incident photons. The doping density in the absorber layer is such that in CsGeI3 should be around 1018 cm−3 and around 1016 cm−3 in the CsGeI2Brlayer. The defects densities in both layers of the perovskite materials should be around 1014 cm−3. Concerning the HTL, the thickness and the doping density of the P3HT should be around 50 nm and  1018 cm−3, respectively. In terms of the back contact electrode, the work function of the metal should be at least equal to 5 eV, corresponding to gold (Au) metal. The series resistance due to the connection of the cell to the external load should be very small, while the shunt resistance due to the leakage current in the solar cell should be high. Furthermore, the operating temperature of the new PSC should be maintained at an ambient level of around 25 °C in order to deliver high efficiency.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar-Terrestrial Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solar3030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the simulation of the novel prototype of a heterojunction perovskite solar cell (PSC) based on CSGeI2Br/CSGeI3. The device consists of two absorber layers (CSGeI2Br, CSGeI3), an electron transport layer (ETL) chosen as TiO2 and a hole transport layer (HTL) given as poly(3-hexylthiophene) (P3HT). Within the simulation, the effects of thickness, doping and defect density in each absorber layer and different back contact metal electrodes on electrical parameters (efficiency, short circuit current, open circuit voltage, and fill factor) are evaluated. In addition, the contribution of the HTL (doping density and thickness), temperature, shunt and series resistance were also checked on the same electrical parameters. The simulations are conducted in standard test conditions with the irradiation normalized as 0.1 W/cm2 using the SCAPS-1D platform. The maximum efficiency obtained within the simulation of this device was about 31.86%. For this device, the thickness of the CSGeI3 layer should be around 900 nm, while that of the CsGeI2Br should be around 100 nm to facilitate optimal absorption of the incident photons. The doping density in the absorber layer is such that in CsGeI3 should be around 1018 cm−3 and around 1016 cm−3 in the CsGeI2Brlayer. The defects densities in both layers of the perovskite materials should be around 1014 cm−3. Concerning the HTL, the thickness and the doping density of the P3HT should be around 50 nm and  1018 cm−3, respectively. In terms of the back contact electrode, the work function of the metal should be at least equal to 5 eV, corresponding to gold (Au) metal. The series resistance due to the connection of the cell to the external load should be very small, while the shunt resistance due to the leakage current in the solar cell should be high. Furthermore, the operating temperature of the new PSC should be maintained at an ambient level of around 25 °C in order to deliver high efficiency.
基于SCAPS-1D的无铅异质结CsGeI2Br/ csgei3基钙钛矿太阳能电池的模拟
本文对基于CSGeI2Br/CSGeI3的异质结钙钛矿太阳能电池(PSC)原型进行了仿真研究。该器件由两个吸收层(CSGeI2Br, CSGeI3),一个电子传输层(ETL)选择为TiO2,一个空穴传输层(HTL)给出为聚(3-己基噻吩)(P3HT)。在模拟中,评估了每个吸收层和不同背接触金属电极的厚度、掺杂和缺陷密度对电气参数(效率、短路电流、开路电压和填充因子)的影响。此外,在相同的电学参数下,还检查了HTL(掺杂密度和厚度)、温度、并联和串联电阻的贡献。模拟是在标准测试条件下进行的,使用SCAPS-1D平台,辐照归一化为0.1 W/cm2。在该装置的模拟中获得的最大效率约为31.86%。对于该器件,CSGeI3层的厚度应在900 nm左右,而CsGeI2Br层的厚度应在100 nm左右,以促进入射光子的最佳吸收。吸收层中的掺杂密度在CsGeI3中应该在1018 cm−3左右,在CsGeI2Brlayer中应该在1016 cm−3左右。钙钛矿材料两层的缺陷密度应在1014 cm−3左右。对于HTL, P3HT的厚度和掺杂密度应分别在50 nm和1018 cm−3左右。就后接触电极而言,金属的功函数应至少等于5ev,对应于金(Au)金属。由于电池与外部负载的连接而产生的串联电阻应该很小,而由于太阳能电池中漏电流而产生的分流电阻应该很高。此外,新PSC的工作温度应保持在25°C左右的环境水平,以提供高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar-Terrestrial Physics
Solar-Terrestrial Physics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
9.10%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信