Global search strategies for simulation optimisation

G. D. Magoulas, T. Eldabi, Ray J. Paul
{"title":"Global search strategies for simulation optimisation","authors":"G. D. Magoulas, T. Eldabi, Ray J. Paul","doi":"10.1109/WSC.2002.1166499","DOIUrl":null,"url":null,"abstract":"Simulation optimization is rapidly becoming a mainstream tool for simulation practitioners, as several simulation packages include add-on optimization tools. We are concentrating on an automated optimization approach that is based on adapting model parameters in order to handle uncertainty that arises from stochastic elements of the process under study. We particularly investigate the use of global search methods in this context, as these methods allow the optimization strategy to escape from sub-optimal (i.e., local) solutions and, in that sense, they improve the efficiency of the simulation optimization process. The paper compares several global search methods and demonstrates the successful application of the Particle Swarm Optimizer to simulation modeling optimization and design of a steelworks plant, a representative example of the stochastic and unpredictable behavior of a complex discrete event simulation model.","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"54 1","pages":"1978-1985 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2002.1166499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Simulation optimization is rapidly becoming a mainstream tool for simulation practitioners, as several simulation packages include add-on optimization tools. We are concentrating on an automated optimization approach that is based on adapting model parameters in order to handle uncertainty that arises from stochastic elements of the process under study. We particularly investigate the use of global search methods in this context, as these methods allow the optimization strategy to escape from sub-optimal (i.e., local) solutions and, in that sense, they improve the efficiency of the simulation optimization process. The paper compares several global search methods and demonstrates the successful application of the Particle Swarm Optimizer to simulation modeling optimization and design of a steelworks plant, a representative example of the stochastic and unpredictable behavior of a complex discrete event simulation model.
仿真优化的全局搜索策略
仿真优化正迅速成为仿真从业者的主流工具,因为一些仿真软件包包括附加的优化工具。我们专注于一种基于自适应模型参数的自动优化方法,以处理由所研究过程的随机因素引起的不确定性。在这种情况下,我们特别研究了全局搜索方法的使用,因为这些方法允许优化策略摆脱次优(即局部)解决方案,从这个意义上说,它们提高了模拟优化过程的效率。本文对几种全局搜索方法进行了比较,并以复杂离散事件仿真模型的随机和不可预测行为为代表,成功地将粒子群优化器应用于炼钢厂的仿真建模优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信