{"title":"AI based colorectal disease detection using real-time screening colonoscopy","authors":"Jia-Ling Jiang, Qianrong Xie, Zhuo Cheng, Jianqiang Cai, Tian Xia, Hang Yang, Bo Yang, Hui-min Peng, Xue-song Bai, Mingque Yan, Xue Li, Jun Zhou, Xuan Huang, Liang Wang, Haiyan Long, Pingxi Wang, Yanpeng Chu, Fanwei Zeng, Xiu-wei Zhang, Guangyu Wang, Fanxin Zeng","doi":"10.1093/pcmedi/pbab013","DOIUrl":null,"url":null,"abstract":"Abstract Colonoscopy is an effective tool for early screening of colorectal diseases. However, the application of colonoscopy in distinguishing different intestinal diseases still faces great challenges of efficiency and accuracy. Here we constructed and evaluated a deep convolution neural network (CNN) model based on 117 055 images from 16 004 individuals, which achieved a high accuracy of 0.933 in the validation dataset in identifying patients with polyp, colitis, colorectal cancer (CRC) from normal. The proposed approach was further validated on multi-center real-time colonoscopy videos and images, which achieved accurate diagnostic performance on detecting colorectal diseases with high accuracy and precision to generalize across external validation datasets. The diagnostic performance of the model was further compared to the skilled endoscopists and the novices. In addition, our model has potential in diagnosis of adenomatous polyp and hyperplastic polyp with an area under the receiver operating characteristic curve of 0.975. Our proposed CNN models have potential in assisting clinicians in making clinical decisions with efficiency during application.","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbab013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Colonoscopy is an effective tool for early screening of colorectal diseases. However, the application of colonoscopy in distinguishing different intestinal diseases still faces great challenges of efficiency and accuracy. Here we constructed and evaluated a deep convolution neural network (CNN) model based on 117 055 images from 16 004 individuals, which achieved a high accuracy of 0.933 in the validation dataset in identifying patients with polyp, colitis, colorectal cancer (CRC) from normal. The proposed approach was further validated on multi-center real-time colonoscopy videos and images, which achieved accurate diagnostic performance on detecting colorectal diseases with high accuracy and precision to generalize across external validation datasets. The diagnostic performance of the model was further compared to the skilled endoscopists and the novices. In addition, our model has potential in diagnosis of adenomatous polyp and hyperplastic polyp with an area under the receiver operating characteristic curve of 0.975. Our proposed CNN models have potential in assisting clinicians in making clinical decisions with efficiency during application.
期刊介绍:
Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.