Random Walks on Three-Dimensional Lattices : A Matrix Method for Calculating the Probability of Eventual Return(Physics)

M. Koiwa
{"title":"Random Walks on Three-Dimensional Lattices : A Matrix Method for Calculating the Probability of Eventual Return(Physics)","authors":"M. Koiwa","doi":"10.1080/14786437708239765","DOIUrl":null,"url":null,"abstract":"Abstract A matrix method for calculating the number of visits to the origin in random-walks on periodic lattices is developed. The method is applied to three-dimensional lattices: the f.c.c., b.c.c. and the diamond lattices. For the f.c.c. and the b.c.c. lattices the results are in good agreement with those obtained by Montroll. The probability of eventual return in the diamond lattice is evaluated for the first time: it is about 0·442. A new concept, the effective coordination number, is defined on the basis of a calculation of random walks on an imaginary lattice.","PeriodicalId":21586,"journal":{"name":"Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy","volume":"15 1","pages":"77"},"PeriodicalIF":0.0000,"publicationDate":"1977-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786437708239765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract A matrix method for calculating the number of visits to the origin in random-walks on periodic lattices is developed. The method is applied to three-dimensional lattices: the f.c.c., b.c.c. and the diamond lattices. For the f.c.c. and the b.c.c. lattices the results are in good agreement with those obtained by Montroll. The probability of eventual return in the diamond lattice is evaluated for the first time: it is about 0·442. A new concept, the effective coordination number, is defined on the basis of a calculation of random walks on an imaginary lattice.
三维格子上的随机行走:计算最终返回概率的矩阵方法(物理)
摘要提出了一种计算周期格随机行走中到达原点次数的矩阵方法。将该方法应用于三维晶格:f.c.c、b.c.c和菱形晶格。对于f.c.c和b.c.c晶格,所得结果与Montroll的结果一致。在菱形晶格中最终返回的概率第一次被评估:它大约是0·442。在虚格上随机游走计算的基础上,定义了有效配位数这一新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信