The micro hydrogen sensor chip with low power consumption

Hairong Wang, M. Wang, Xiaowei Chen, B. Han
{"title":"The micro hydrogen sensor chip with low power consumption","authors":"Hairong Wang, M. Wang, Xiaowei Chen, B. Han","doi":"10.1109/3M-NANO.2017.8286274","DOIUrl":null,"url":null,"abstract":"An integrated micro H2 sensor chip with low power consumption is presented. A pair of interdigitated sensing electrodes, sensing layer and heating electrodes surrounding them were designed on the same layer. To realize low power consumption, the silicon substrate with high thermal conduction was released by wet etching and the 1.3#x03BC;m thick membrane with excellent thermal insulation which consists of Si3N4/SiO2/Si3N4/SiO2 four films, was reserved to support the above structure. Annealing was carried out to reduce the stresses of the films. The stacked TiO2/SnO2 composite materials were used to detect H2 and they had six layers consisting of deposited SnO2 and TiO2 through RF magnetron sputtering in turn. The preparation process of the composite materials was combined with the conventional MEMS process to realize mass production of the wafer-level sensor chips with good consistency. The H2 sensor can work steadily for H2 detection (100–900ppm) at 244 °C with low power consumption as 36mW.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"92 1","pages":"264-268"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An integrated micro H2 sensor chip with low power consumption is presented. A pair of interdigitated sensing electrodes, sensing layer and heating electrodes surrounding them were designed on the same layer. To realize low power consumption, the silicon substrate with high thermal conduction was released by wet etching and the 1.3#x03BC;m thick membrane with excellent thermal insulation which consists of Si3N4/SiO2/Si3N4/SiO2 four films, was reserved to support the above structure. Annealing was carried out to reduce the stresses of the films. The stacked TiO2/SnO2 composite materials were used to detect H2 and they had six layers consisting of deposited SnO2 and TiO2 through RF magnetron sputtering in turn. The preparation process of the composite materials was combined with the conventional MEMS process to realize mass production of the wafer-level sensor chips with good consistency. The H2 sensor can work steadily for H2 detection (100–900ppm) at 244 °C with low power consumption as 36mW.
低功耗微型氢传感器芯片
提出了一种集成式低功耗微型氢气传感器芯片。在同一层上设计了一对交错的感应电极、感应层和围绕它们的加热电极。为实现低功耗,采用湿法蚀刻法释放高导热硅衬底,并保留由Si3N4/SiO2/Si3N4/SiO2四层膜组成的1.3#x03BC;m厚、隔热性能优良的膜来支撑上述结构。退火是为了降低薄膜的应力。利用堆叠后的TiO2/SnO2复合材料对H2进行检测,通过射频磁控溅射,该复合材料由沉积的SnO2和TiO2依次组成6层。将复合材料的制备工艺与传统MEMS工艺相结合,实现了具有良好一致性的晶圆级传感器芯片的量产。H2传感器可在244°C下稳定工作(100-900ppm),功耗低至36mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信